Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

Masafumi Yoshino[1]; Todor Gramchev[2]

  • [1] Graduate School of Science Hiroshima University Higashi-Hiroshima, 739-8526 (Japan)
  • [2] Università di Cagliari Dipartimento di Matematica via Ospedale 72 09124 Cagliari (Italy)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 263-297
  • ISSN: 0373-0956

Abstract

top
We study the simultaneous linearizability of d –actions (and the corresponding d -dimensional Lie algebras) defined by commuting singular vector fields in n fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of d vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators occur, then we show the existence of divergent solutions of an overdetermined system of linearized homological equations. In the category, the situation is completely different. We show Sternberg’s theorem for a commuting system of vector fields with a Jordan block although they do not satisfy the condition.

How to cite

top

Yoshino, Masafumi, and Gramchev, Todor. "Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks." Annales de l’institut Fourier 58.1 (2008): 263-297. <http://eudml.org/doc/10311>.

@article{Yoshino2008,
abstract = {We study the simultaneous linearizability of $d$–actions (and the corresponding $d$-dimensional Lie algebras) defined by commuting singular vector fields in $\{\mathbb\{C\}\}^n$ fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of $d$ vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators occur, then we show the existence of divergent solutions of an overdetermined system of linearized homological equations. In the $\{\mathbb\{C\}\}^\infty $ category, the situation is completely different. We show Sternberg’s theorem for a commuting system of $\{\mathbb\{C\}\}^\infty $ vector fields with a Jordan block although they do not satisfy the condition.},
affiliation = {Graduate School of Science Hiroshima University Higashi-Hiroshima, 739-8526 (Japan); Università di Cagliari Dipartimento di Matematica via Ospedale 72 09124 Cagliari (Italy)},
author = {Yoshino, Masafumi, Gramchev, Todor},
journal = {Annales de l’institut Fourier},
keywords = {singular vector field; linearization; Jordan block; homological equation; Diophantine conditions; Gevrey spaces; decomposition},
language = {eng},
number = {1},
pages = {263-297},
publisher = {Association des Annales de l’institut Fourier},
title = {Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks},
url = {http://eudml.org/doc/10311},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Yoshino, Masafumi
AU - Gramchev, Todor
TI - Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 263
EP - 297
AB - We study the simultaneous linearizability of $d$–actions (and the corresponding $d$-dimensional Lie algebras) defined by commuting singular vector fields in ${\mathbb{C}}^n$ fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of $d$ vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators occur, then we show the existence of divergent solutions of an overdetermined system of linearized homological equations. In the ${\mathbb{C}}^\infty $ category, the situation is completely different. We show Sternberg’s theorem for a commuting system of ${\mathbb{C}}^\infty $ vector fields with a Jordan block although they do not satisfy the condition.
LA - eng
KW - singular vector field; linearization; Jordan block; homological equation; Diophantine conditions; Gevrey spaces; decomposition
UR - http://eudml.org/doc/10311
ER -

References

top
  1. M. Abate, Diagonalization of nondiagonalizable discrete holomorphic dynamical systems, Amer. J. Math. 122 (2000), 757-781 Zbl0966.32018MR1771573
  2. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, (1983), Springer Zbl0507.34003MR695786
  3. A. D. Bruno, The analytic form of differential equations, Tr. Mosk. Mat. O-va (1971), 119-262 Zbl0263.34003
  4. A. D. Bruno, S. Walcher, Symmetries and convergence of normalizing transformations, J. Math. Anal. Appl. 183 (1994), 571-576 Zbl0804.34040MR1274857
  5. T. Carletti, Exponentially long time stability for non-linearizable analytic germs of ( n , 0 ) , Ann Inst. Fourier (Grenoble) 54 (2004), 989-1004 Zbl1063.37043MR2111018
  6. T. Carletti, S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of ( , 0 ) , Bull. Soc. Math. France 128 (2000), 69-85 Zbl0997.37017MR1765828
  7. K. T. Chen, Diffeomorphisms: C - realizations of formal properties, Amer. J. Math. 87 (1965), 140-157 Zbl0151.32001MR173271
  8. G. Cicogna, G. Gaeta, Symmetry and perturbation theory in nonlinear dynamics, 57 (1999), Springer–Verlag Zbl1059.37044MR1732242
  9. G. Cicogna, S. Walcher, Convergence of normal form transformations: the role of symmetries. Symmetry and perturbation theory, Acta Math. Appl. 70 (2002), 95-111 Zbl1013.34033MR1892377
  10. R. De La Llave, A tutorial on KAM theory., (1999), Univ. of Washington, Seattle Zbl1055.37064
  11. D. DeLatte, T. Gramchev, Biholomorphic maps with linear parts having Jordan blocks: Linearization and resonance type phenomena, Math. Physics Electronic Journal 8 (2002), 1-27 Zbl1038.37038MR1922424
  12. D. Dickinson, T. Gramchev, M. Yoshino, Perturbations of vector fields on tori: resonant normal forms and Diophantine phenomena, Proc. Edinb. Math. Soc. (2) 45 (2002), 731-159 Zbl1032.37010MR1933753
  13. F. Dumortier, R. Roussarie, Smooth linearization of germs of R 2 -actions and holomorphic vector fields, Ann. Inst. Fourier (Grenoble) 30 (1980), 31-64 Zbl0418.58015MR576072
  14. F. R. Gantmacher, The theory of matrices, 1-2 (1959), Chelsea Publishing Co., New York Zbl0927.15001MR107649
  15. T. Gramchev, On the linearization of holomorphic vector fields in the Siegel Domain with linear parts having nontrivial Jordan blocks, World Scientific (2003), 106-115 MR1976662
  16. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.É.S. 49 (1979), 5-233 Zbl0448.58019MR538680
  17. A. Katok, S. Katok, Higher cohomology for Abelian groups of toral automorphisms, Ergodic Theory Dyn. Syst. 15 (1995), 569-592 Zbl0851.57039MR1336707
  18. P. R. Marco, Non linearizable holomorphic dynamics having an uncountable number of symmetries, Inv. Math. 119 (1995), 67-127 Zbl0862.58045MR1309972
  19. P. R. Marco, Total convergence or small divergence in small divisors, Commun. Math. Phys. 223 (2001), 451-464 Zbl1161.37331MR1866162
  20. J. Moser, On commuting circle mappings and simultaneous Diophantine approximations, Mathematische Zeitschrift 205 (1990), 105-121 Zbl0689.58031MR1069487
  21. R. Rousssarie, Modèles locaux de champs et de formes, 30 (1975), Astérisque Zbl0327.57017
  22. W. Schmidt, Modèles locaux de champs et de formes, 785 (1980), Springer Verlag 
  23. S. Sternberg, The structure of local homeomorphisms II, III, Amer. J. Math. (1958), 623-632 Zbl0083.31406MR96854
  24. L. Stolovitch, Singular complete integrability, Publ. Math. I.H.E.S. 91 (2000), 134-210 Zbl0997.32024MR1828744
  25. L. Stolovitch, Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. Math. 161 (2005), 589-612 Zbl1080.32019
  26. S. Walcher, On convergent normal form transformations in presence of symmetries, J. Math. Anal. Appl. 244 (2000), 17-26 Zbl0959.34030MR1746785
  27. J.-C Yoccoz, A remark on Siegel’s theorem for nondiagonalizable linear part, Astérisque 231 (1995), 3-88 
  28. M. Yoshino, Simultaneous normal forms of commuting maps and vector fields, World Scientific, Singapore (1999), 287-294 Zbl0964.37029MR1844128
  29. N. T. Zung, Convergence versus integrability in Poincaré-Dulac normal form., Math. Res. Lett. 9 (2002), 217-228 Zbl1019.34084MR1909639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.