Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials
Pascal Auscher[1]; Besma Ben Ali[1]
- [1] Université de Paris-Sud, UMR du CNRS 8628 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 6, page 1975-2013
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAuscher, Pascal, and Ben Ali, Besma. "Maximal inequalities and Riesz transform estimates on $L^p$ spaces for Schrödinger operators with nonnegative potentials." Annales de l’institut Fourier 57.6 (2007): 1975-2013. <http://eudml.org/doc/10284>.
@article{Auscher2007,
abstract = {We show various $L^p$ estimates for Schrödinger operators $-\Delta +V$ on $\mathbb\{R\}^n$ and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of $-\Delta +V$ and their gradients.},
affiliation = {Université de Paris-Sud, UMR du CNRS 8628 91405 Orsay Cedex (France); Université de Paris-Sud, UMR du CNRS 8628 91405 Orsay Cedex (France)},
author = {Auscher, Pascal, Ben Ali, Besma},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operators; maximal inequalities; Riesz transforms; Fefferman-Phong inequality; reverse Hölder estimates; Riesz transforms, Fefferman-Phong inequality},
language = {eng},
number = {6},
pages = {1975-2013},
publisher = {Association des Annales de l’institut Fourier},
title = {Maximal inequalities and Riesz transform estimates on $L^p$ spaces for Schrödinger operators with nonnegative potentials},
url = {http://eudml.org/doc/10284},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Auscher, Pascal
AU - Ben Ali, Besma
TI - Maximal inequalities and Riesz transform estimates on $L^p$ spaces for Schrödinger operators with nonnegative potentials
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1975
EP - 2013
AB - We show various $L^p$ estimates for Schrödinger operators $-\Delta +V$ on $\mathbb{R}^n$ and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of $-\Delta +V$ and their gradients.
LA - eng
KW - Schrödinger operators; maximal inequalities; Riesz transforms; Fefferman-Phong inequality; reverse Hölder estimates; Riesz transforms, Fefferman-Phong inequality
UR - http://eudml.org/doc/10284
ER -
References
top- P. Auscher, On estimates for square roots of second order elliptic operators on , Publ. Mat. 48 (2004), 159-186 Zbl1107.42003MR2044643
- P. Auscher, X. T. Duong, A. McIntosh, Boundedness of Banach space valued singular integral operators and applications to Hardy spaces
- P. Auscher, J.M. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights, Advances in Mathematics 212 (2007), 225-276 Zbl1213.42030MR2319768
- P. Bénilan, H. Brézis, M. Crandall, A semilinear equation in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975), 523-555 Zbl0314.35077MR390473
- H. Brézis, W. Strauss, Semi-linear second-order elliptic equations in , J. Math. Soc. Japan 25 (1973), 565-590 Zbl0278.35041MR336050
- S. Buckley, Pointwise multipliers for reverse Hölder spaces. II., Proc. Roy. Irish Acad. Sect. A 95 (1995), 193-204 Zbl0917.42016MR1660378
- T. Coulhon, X. T. Duong, Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151-1169 Zbl0973.58018MR1458299
- E. B. Davies, Some norm bounds and quadratic form inequalities for Schrödinger operators, J. Operator Theory 9 (1983), 147-162 Zbl0516.47025MR695944
- E. B. Davies, Heat kernels and spectral theory, (1989), Cambridge University Press, Cambridge Zbl0699.35006MR990239
- E. B. Davies, Spectral theory and differential operators, (1995), Cambridge University Press, Cambridge Zbl0893.47004MR1349825
- X. T. Duong, A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana 15 (1999), 233-265 Zbl0980.42007MR1715407
- X. T. Duong, E. Ouhabaz, L. Yan, Endpoint estimates for Riesz transforms of magnetic Schrödinger operators, Arkiv for Mat. 44 (2006), 261-275 Zbl1172.35370MR2292721
- X. T. Duong, D. Robinson, Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. Funct. Anal. 142 (1996), 89-128 Zbl0932.47013MR1419418
- J. Dziubański, P. Glowacki, Sobolev spaces related to Schrödinger operators with polynomial potentials, Preprint (2006) Zbl1177.47055
- C. Fefferman, The uncertainty principle., Bull. Amer. Math. Soc. (N.S.) 9 (1983), 129-206 Zbl0526.35080MR707957
- C. Fefferman, E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193 Zbl0257.46078MR447953
- T. Gallouët, J.-M. Morel, Resolution of a semilinear equation in , Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 275-288 Zbl0573.35030MR760776
- L. Grafakos, Classical and Modern Fourier Analysis, (2004), Pearson Education, New Jersey Zbl1148.42001
- D. Guibourg, Inégalités maximales pour l’opérateur de Schrödinger, (1992) Zbl0783.35013
- D. Guibourg, Inégalités maximales pour l’opérateur de Schrödinger, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 249-252 Zbl0783.35013
- W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659-664 Zbl0779.35025MR1096404
- T. Iwaniec, C. Nolder, A. Hardy-Littlewood inequality for quasiregular mappings in certain domains in , Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267-282 Zbl0588.30023MR802488
- R. Johnson, C.J. Neugebauer, Change of variable results for -and reverse Hölder -classes, Trans. Amer.Math. Soc. 328 (1991), 639-666 Zbl0756.42015MR1018575
- T. Kato, Schrödinger operators with singular potentials. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math. 13 (1973), 135-148 Zbl0246.35025MR333833
- T. Kato, -theory of Schrödinger operators with a singular potential. Aspects of positivity in functional analysis (Tübingen, 1985), North-Holland Math. Stud. (1986), 63-78 Zbl0627.47025MR859719
- C. Le Merdy, On square functions associated to sectorial operators, Bull. Soc. Math. France 132 (2004), 137-156 Zbl1066.47013MR2075919
- J. Nourrigat, Une inégalité
- N. Okazawa, An theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan 36 (1984), 675-688 Zbl0556.35032MR759423
- El M. Ouhabaz, Analysis of heat equations on domains, (2005), Princeton University Press, Princeton, N.J. Zbl1082.35003MR2124040
- Yu. Semenov, Schrödinger operators with -potentials, Comm. Math. Phys. 53 (1977), 277-284 Zbl0346.47011MR473920
- Z. Shen, estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546 Zbl0818.35021MR1343560
- Z. Shen, Bounds of Riesz transforms on spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), 173-197 Zbl1068.47058MR2141694
- A. Sikora, Riesz transform, Gaussian bounds and the method of wave equation, Math. Z. 247 (2004), 643-662 Zbl1066.58014MR2114433
- B. Simon, Hardy and Rellich inequalities in nonintegral dimension, J. Operator Theory 9 (1983), 143-146 Zbl0589.35022MR695943
- E. M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
- E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, (1971), Princeton University Press, Princeton, N.J. Zbl0232.42007MR304972
- J. O. Strömberg, A. Torchinsky, Weighted Hardy spaces, (1989), Springer-Verlag Zbl0676.42021MR1011673
- A. Torchinsky, Real-variable methods in harmonic analysis, (1986), Academic Press and Inc., Orlando, FL Zbl0621.42001MR869816
- J. Voigt, Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 67 (1986), 167-205 Zbl0628.47027MR845197
- J. Zhong, The Sobolev estimates for some Schrödinger type operators, Math. Sci. Res. Hot-Line 3 (1999), 1-48 Zbl0956.35029MR1717791
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.