Displaying similar documents to “A rank theorem for analytic maps between power series spaces”

Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem

B. Jakubczyk (2000)

Annales Polonici Mathematici

Similarity:

We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.

Relations among analytic functions. I

Edward Bierstone, P. D. Milman (1987)

Annales de l'institut Fourier

Similarity:

Neither real analytic sets nor the images of real or complex analytic mappings are, in general, coherent. Let Φ : X Y be a morphism of real analytic spaces, and let Ψ : 𝒢 be a homomorphism of coherent modules over the induced ring homomorphism Φ * : 𝒪 Y 𝒪 X . We conjecture that, despite the failure of coherence, certain natural discrete invariants of the modules of formal relations a = Ker Ψ ^ a , a X , are upper semi-continuous in the analytic Zariski topology of X . We prove semicontinuity in many cases (e.g. in the algebraic...