Displaying similar documents to “Cyclically valued rings and formal power series”

An identity related to centralizers in semiprime rings

Joso Vukman (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The purpose of this paper is to prove the following result: Let R be a 2 -torsion free semiprime ring and let T : R R be an additive mapping, such that 2 T ( x 2 ) = T ( x ) x + x T ( x ) holds for all x R . In this case T is left and right centralizer.

Baireness of C k ( X ) for ordered X

Michael Granado, Gary Gruenhage (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that if X is a subspace of a linearly ordered space, then C k ( X ) is a Baire space if and only if C k ( X ) is Choquet iff X has the Moving Off Property.

Generalized linearly ordered spaces and weak pseudocompactness

Oleg Okunev, Angel Tamariz-Mascarúa (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is if X is either weakly pseudocompact or Lindelöf locally compact. We prove that if X is a generalized linearly ordered space, and either (i) each proper open interval in X is truly weakly pseudocompact, or (ii) X is paracompact and each point of X has a truly weakly pseudocompact neighborhood, then X is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck].

On infinite composition of affine mappings

László Máté (1999)

Fundamenta Mathematicae

Similarity:

 Let F i = 1 , . . . , N be affine mappings of n . It is well known that if there exists j ≤ 1 such that for every σ 1 , . . . , σ j 1 , . . . , N the composition (1) F σ 1 . . . F σ j is a contraction, then for any infinite sequence σ 1 , σ 2 , . . . 1 , . . . , N and any z n , the sequence (2) F σ 1 . . . F σ n ( z ) is convergent and the limit is independent of z. We prove the following converse result: If (2) is convergent for any z n and any σ = σ 1 , σ 2 , . . . belonging to some subshift Σ of N symbols (and the limit is independent of z), then there exists j ≥ 1 such that for every σ = σ 1 , σ 2 , . . . Σ the composition (1) is a contraction....

A problem of Galambos on Engel expansions

Jun Wu (2000)

Acta Arithmetica

Similarity:

1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) x = 1 / d ( x ) + 1 / ( d ( x ) d ( x ) ) + . . . + 1 / ( d ( x ) d ( x ) . . . d n ( x ) ) + . . . , where d j ( x ) , j 1 is a sequence of positive integers satisfying d₁(x) ≥ 2 and d j + 1 ( x ) d j ( x ) for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) l i m n d n 1 / n ( x ) = e . He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. d i m H x ( 0 , 1 ] : ( 2 ) f a i l s = 1 . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and d i m H to denote...