Non-commutative Dedekind rings
A. W. Goldie (1967-1968)
Séminaire Dubreil. Algèbre et théorie des nombres
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. W. Goldie (1967-1968)
Séminaire Dubreil. Algèbre et théorie des nombres
Similarity:
Giuliano Artico, Umberto Marconi, Roberto Moresco (1981)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
David Rudd (1975)
Fundamenta Mathematicae
Similarity:
Osba, Emad A.Abu (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Azzouz Cherrabi, Abderrahim Miri (1999)
Extracta Mathematicae
Similarity:
A. Holme (1966)
Fundamenta Mathematicae
Similarity:
C. Kohls (1958)
Fundamenta Mathematicae
Similarity:
James R. Mosher (1970)
Compositio Mathematica
Similarity:
Voskoglou, M.G. (1990)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Karim Samei (2006)
Fundamenta Mathematicae
Similarity:
In a commutative ring R, an ideal I consisting entirely of zero divisors is called a torsion ideal, and an ideal is called a z⁰-ideal if I is torsion and for each a ∈ I the intersection of all minimal prime ideals containing a is contained in I. We prove that in large classes of rings, say R, the following results hold: every z-ideal is a z⁰-ideal if and only if every element of R is either a zero divisor or a unit, if and only if every maximal ideal in R (in general, every prime z-ideal)...
Christopher P. L. Rhodes (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: