Displaying similar documents to “The Weyl fractional operator of a system of polynomials”

Theorem for Series in Three-Parameter Mittag-Leffler Function

Soubhia, Ana, Camargo, Rubens, Oliveira, Edmundo, Vaz, Jayme (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification 2010: 26A33, 33E12. The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05 We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations...

A constructive approach for solving system of fractional differential equations

H.R. Marasi, Vishnu Narayan Mishra, M. Daneshbastam (2017)

Waves, Wavelets and Fractals

Similarity:

In this paper to solve a set of linear and nonlinear fractional differential equations, we modified the differential transform method. Adomian polynomials helped taking care of the non-linear terms. The main advantage of our algorithm over the numerical methods is being able to solve nonlinear systems without any discretization or restrictive assumption. We considered Caputo definition for fractional derivatives.

Fractional positive continuous-time linear systems and their reachability

Tadeusz Kaczorek (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

A new class of fractional linear continuous-time linear systems described by state equations is introduced. The solution to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional positive systems.

Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?

Kiryakova, Virginia (2011)

Union of Bulgarian Mathematicians

Similarity:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата. ...

Fractional-order Bessel functions with various applications

Haniye Dehestani, Yadollah Ordokhani, Mohsen Razzaghi (2019)

Applications of Mathematics

Similarity:

We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error...