Carter subgroups and injectors in a class of locally finite groups
B. Hartley, M. J. Tomkinson (1988)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B. Hartley, M. J. Tomkinson (1988)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Yong Xu, Xianhua Li (2016)
Open Mathematics
Similarity:
We introduce a new subgroup embedding property of finite groups called CSQ-normality of subgroups. Using this subgroup property, we determine the structure of finite groups with some CSQ-normal subgroups of Sylow subgroups. As an application of our results, some recent results are generalized.
Adolfo Ballester-Bolinches, James Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig (2013)
Open Mathematics
Similarity:
A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable...
Sergio Camp-Mora (2013)
Open Mathematics
Similarity:
A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.
James Beidleman, Hermann Heineken, Jack Schmidt (2013)
Open Mathematics
Similarity:
A finite solvable group G is called an X-group if the subnormal subgroups of G permute with all the system normalizers of G. It is our purpose here to determine some of the properties of X-groups. Subgroups and quotient groups of X-groups are X-groups. Let M and N be normal subgroups of a group G of relatively prime order. If G/M and G/N are X-groups, then G is also an X-group. Let the nilpotent residual L of G be abelian. Then G is an X-group if and only if G acts by conjugation on...
Ana Martínez Pastor (1994)
Publicacions Matemàtiques
Similarity:
Let G be a finite group and p a prime. We consider an F-injector K of G, being F a Fitting class between E y ES, and we study the structure and normality in G of the subgroups ZJ(K) and ZJ*(K), provided that G verifies certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p-stable group, (1968), 555-564).
James Beidleman, Mathew Ragland (2011)
Open Mathematics
Similarity:
The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is...
A. Arikan, T. Özen (2004)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: