The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Patterns and periodicity in a family of resultants”

Kloosterman sums for prime powers in -adic fields

Stanley J. Gurak (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let K be a field of degree n over Q p , the field of rational p -adic numbers, say with residue degree f , ramification index e and differential exponent d . Let O be the ring of integers of K and P its unique prime ideal. The trace and norm maps for K / Q p are denoted T r and N , respectively. Fix q = p r , a power of a prime p , and let η be a numerical character defined modulo q and of order o ( η ) . The character η extends to the ring of p -adic integers p in the natural way; namely η ( u ) = η ( u ˜ ) , where u ˜ denotes the residue...

Cohomology of integer matrices and local-global divisibility on the torus

Marco Illengo (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let p 2 be a prime and let  G be a p -group of matrices in SL n ( ) , for some integer  n . In this paper we show that, when n < 3 ( p - 1 ) , a certain subgroup of the cohomology group H 1 ( G , 𝔽 p n ) is trivial. We also show that this statement can be false when n 3 ( p - 1 ) . Together with a result of Dvornicich and Zannier (see []), we obtain that any algebraic torus of dimension n < 3 ( p - 1 ) enjoys a local-global principle on divisibility by  p .

A generalization of Scholz’s reciprocity law

Mark Budden, Jeremiah Eisenmenger, Jonathan Kish (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We provide a generalization of Scholz’s reciprocity law using the subfields K 2 t - 1 and K 2 t of ( ζ p ) , of degrees 2 t - 1 and 2 t over , respectively. The proof requires a particular choice of primitive element for K 2 t over K 2 t - 1 and is based upon the splitting of the cyclotomic polynomial Φ p ( x ) over the subfields.

Powers and alternative laws

Nicholas Ormes, Petr Vojtěchovský (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A groupoid is alternative if it satisfies the alternative laws x ( x y ) = ( x x ) y and x ( y y ) = ( x y ) y . These laws induce four partial maps on + × + ( r , s ) ( 2 r , s - r ) , ( r - s , 2 s ) , ( r / 2 , s + r / 2 ) , ( r + s / 2 , s / 2 ) , that taken together form a dynamical system. We describe the orbits of this dynamical system, which allows us to show that n th powers in a free alternative groupoid on one generator are well-defined if and only if n 5 . We then discuss some number theoretical properties of the orbits, and the existence of alternative loops without two-sided inverses. ...

On the trace of the ring of integers of an abelian number field

Kurt Girstmair (1992)

Acta Arithmetica

Similarity:

Let K, L be algebraic number fields with K ⊆ L, and O K , O L their respective rings of integers. We consider the trace map T = T L / K : L K and the O K -ideal T ( O L ) O K . By I(L/K) we denote the group indexof T ( O L ) in O K (i.e., the norm of T ( O L ) over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of T ( O L ) (Theorem 1)....