Solitons and large time behavior of solutions of a multidimensional integrable equation
- [1] CMAP, Ecole Polytechnique Route de Saclay 91128, Palaiseau France
Journées Équations aux dérivées partielles (2013)
- page 1-17
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topKazeykina, Anna. "Solitons and large time behavior of solutions of a multidimensional integrable equation." Journées Équations aux dérivées partielles (2013): 1-17. <http://eudml.org/doc/275665>.
@article{Kazeykina2013,
abstract = {Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.},
affiliation = {CMAP, Ecole Polytechnique Route de Saclay 91128, Palaiseau France},
author = {Kazeykina, Anna},
journal = {Journées Équations aux dérivées partielles},
keywords = {Novikov-Veselov equation; inverse scattering method; two-dimensional Schrödinger equation; solitons; large time behavior},
language = {eng},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Solitons and large time behavior of solutions of a multidimensional integrable equation},
url = {http://eudml.org/doc/275665},
year = {2013},
}
TY - JOUR
AU - Kazeykina, Anna
TI - Solitons and large time behavior of solutions of a multidimensional integrable equation
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
LA - eng
KW - Novikov-Veselov equation; inverse scattering method; two-dimensional Schrödinger equation; solitons; large time behavior
UR - http://eudml.org/doc/275665
ER -
References
top- Boiti M., Leon J.J.-P., Manna M., Pempinelli F. On a spectral transform of a KdV-like equation related to the Schrödinger operator in the plane. Inverse Problems. 3, 25–36 (1987) Zbl0624.35071MR875315
- Bogdanov L. V. The Veselov-Novikov equation as a natural generalization of the Korteweg-de Vries equation. Teoret. Mat. Fiz. 70(2), 309-314 (1987), translation in Theoret. and Math. Phys. 70(2), 219-223 (1987) Zbl0639.35072MR894472
- de Bouard A., Saut J.-C. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire. 14(2), 211-236 (1997) Zbl0883.35103MR1441393
- Calderón A. P. On an inverse boundary problem. Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasiliera de Matematica, Rio de Janeiro. 61-73 (1980)
- Chang J.-H. The Gould-Hopper polynomials in the Novikov-Veselov equation. J. Math. Phys. 52(9), 092703 (2011) Zbl1272.35168MR2867810
- Faddeev L.D. Growing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR. 165(3), 514-517 (1965), translation in Sov. Phys. Dokl. 10, 1033-1035 (1966) Zbl0147.09404
- Ferapontov E.V. Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective differential geometry. Diff. Geom. Appl. 11, 117-128 (1999) Zbl0990.53008MR1712135
- Gelfand I.M. Some aspects of functional analysis and algebra. Proceedings of the International Congress of Mathematicians. Amsterdam: Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co. 1, 253-276 (1954) Zbl0079.32602MR95423
- Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. Moscow: Nauka (1965) Zbl0181.13504MR220070
- Grinevich P.G. Rational solitons of the Veselov–Novikov equation are reflectionless potentials at fixed energy. Teoret. Mat. Fiz. 69(2), 307-310 (1986), translation in Theor. Math. Phys. 69, 1170-1172 (1986) Zbl0617.35121MR884498
- Grinevich P.G. Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity. Russ. Math. Surv. 55(6), 1015–1083 (2000) Zbl1022.81057MR1840357
- Grinevich P.G., Novikov, R.G. Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials. Commun. Math. Phys. 174, 409-446 (1995) Zbl0843.35090MR1362172
- Grinevich P.G., Novikov S.P. Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state. Funkts. Anal. Prilozh. 22(1), 23-33 (1988), translation in Funct. Anal. Appl. 22(1), 19-27 (1988) Zbl0672.35074MR936696
- Kazeykina A.V. A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with non-singular scattering data. Inverse Problems. 28(5), 055017 (2012) Zbl1238.35134MR2923202
- Kazeykina A.V. Kazeykina A.V. Absence of conductivity-type solitons for the Novikov-Veselov equation at zero energy. Funct. Anal. Appl., 47(1), 64-66 (2013) Zbl1280.35127
- Kazeykina A.V. Absence of solitons with sufficient algebraic localization for the Novikov-Veselov equation at nonzero energy. Funct. Anal. Appl., 48(1), 24-35 (2014) Zbl1308.35250
- Kazeykina A.V., Novikov R.G. A large time asymptotics for transparent potentials for the Novikov–Veselov equation at positive energy. J. Nonlinear Math. Phys. 18(3), 377-400 (2011) Zbl1228.35203MR2846100
- Kazeykina A.V., Novikov R.G. Large time asymptotics for the Grinevich–Zakharov potentials. Bulletin des Sciences Mathématiques. 135, 374-382 (2011) Zbl1219.35237MR2799814
- Konopelchenko B., Moro A. Integrable equations in nonlinear geometrical optics. Studies in Applied Mathematics. 113(4), 325-352 (2004) Zbl1141.78302MR2094235
- Lassas M., Mueller J.L., Siltanen S., Stahel A. The Novikov-Veselov Equation and the Inverse Scattering Method, Part I: Analysis. Physica D. 241, 1322-1335 (2012) Zbl1248.35187MR2947348
- Manakov S.V. The inverse scattering method and two-dimensional evolution equations. Uspekhi Mat. Nauk. 31(5), 245–246 (1976) (in Russian) Zbl0345.35055MR467037
- Manakov S.V., Zakharov V.E., Bordag L.A., Its A.R., Matveev V.B. Two–dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Physics Letters A. 63(3), 205–206 (1977)
- Nachman A.I. Global uniqueness for a two-dimensional inverse boundary value problem. Annals of Mathematics. 143, 71-96 (1995) Zbl0857.35135MR1370758
- Novikov R.G. The inverse scattering problem on a fixed energy level for the two–dimensional Schrödinger operator. Journal of Funct. Anal. 103, 409-463 (1992) Zbl0762.35077MR1151554
- Novikov R.G. Absence of exponentially localized solitons for the Novikov–Veselov equation at positive energy. Physics Letters A. 375, 1233-1235 (2011) Zbl1242.35196MR2770407
- Novikov S.P., Veselov A.P. Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations. Dokl. Akad. Nauk SSSR. 279, 20–24 (1984), translation in Sov. Math. Dokl. 30, 588-591 (1984) Zbl0613.35020MR769198
- Novikov S.P., Veselov A.P. Finite-zone, two-dimensional Schrödinger operators. Potential operators. Dokl. Akad. Nauk SSSR. 279, 784–788 (1984), translation in Sov. Math. Dokl. 30, 705–708 (1984) Zbl0602.35024MR771574
- Perry P.A. Miura maps and inverse scattering for the Novikov-Veselov equation. Analysis & PDE, to appear. arXiv: 1201.2385v2 (2012) MR3218811
- Tsai T.-Y. The Schrödinger operator in the plane. Inverse Problems. 9, 763-787 (1993) Zbl0797.35140MR1251205
- Vekua I.N. Generalized analytic functions. Oxford: Pergamon Press (1962) Zbl0100.07603MR150320
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.