Solitons and large time behavior of solutions of a multidimensional integrable equation

Anna Kazeykina[1]

  • [1] CMAP, Ecole Polytechnique Route de Saclay 91128, Palaiseau France

Journées Équations aux dérivées partielles (2013)

  • page 1-17
  • ISSN: 0752-0360

Abstract

top
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.

How to cite

top

Kazeykina, Anna. "Solitons and large time behavior of solutions of a multidimensional integrable equation." Journées Équations aux dérivées partielles (2013): 1-17. <http://eudml.org/doc/275665>.

@article{Kazeykina2013,
abstract = {Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.},
affiliation = {CMAP, Ecole Polytechnique Route de Saclay 91128, Palaiseau France},
author = {Kazeykina, Anna},
journal = {Journées Équations aux dérivées partielles},
keywords = {Novikov-Veselov equation; inverse scattering method; two-dimensional Schrödinger equation; solitons; large time behavior},
language = {eng},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Solitons and large time behavior of solutions of a multidimensional integrable equation},
url = {http://eudml.org/doc/275665},
year = {2013},
}

TY - JOUR
AU - Kazeykina, Anna
TI - Solitons and large time behavior of solutions of a multidimensional integrable equation
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
LA - eng
KW - Novikov-Veselov equation; inverse scattering method; two-dimensional Schrödinger equation; solitons; large time behavior
UR - http://eudml.org/doc/275665
ER -

References

top
  1. Boiti M., Leon J.J.-P., Manna M., Pempinelli F. On a spectral transform of a KdV-like equation related to the Schrödinger operator in the plane. Inverse Problems. 3, 25–36 (1987) Zbl0624.35071MR875315
  2. Bogdanov L. V. The Veselov-Novikov equation as a natural generalization of the Korteweg-de Vries equation. Teoret. Mat. Fiz. 70(2), 309-314 (1987), translation in Theoret. and Math. Phys. 70(2), 219-223 (1987) Zbl0639.35072MR894472
  3. de Bouard A., Saut J.-C. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire. 14(2), 211-236 (1997) Zbl0883.35103MR1441393
  4. Calderón A. P. On an inverse boundary problem. Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasiliera de Matematica, Rio de Janeiro. 61-73 (1980) 
  5. Chang J.-H. The Gould-Hopper polynomials in the Novikov-Veselov equation. J. Math. Phys. 52(9), 092703 (2011) Zbl1272.35168MR2867810
  6. Faddeev L.D. Growing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR. 165(3), 514-517 (1965), translation in Sov. Phys. Dokl. 10, 1033-1035 (1966) Zbl0147.09404
  7. Ferapontov E.V. Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective differential geometry. Diff. Geom. Appl. 11, 117-128 (1999) Zbl0990.53008MR1712135
  8. Gelfand I.M. Some aspects of functional analysis and algebra. Proceedings of the International Congress of Mathematicians. Amsterdam: Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co. 1, 253-276 (1954) Zbl0079.32602MR95423
  9. Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. Moscow: Nauka (1965) Zbl0181.13504MR220070
  10. Grinevich P.G. Rational solitons of the Veselov–Novikov equation are reflectionless potentials at fixed energy. Teoret. Mat. Fiz. 69(2), 307-310 (1986), translation in Theor. Math. Phys. 69, 1170-1172 (1986) Zbl0617.35121MR884498
  11. Grinevich P.G. Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity. Russ. Math. Surv. 55(6), 1015–1083 (2000) Zbl1022.81057MR1840357
  12. Grinevich P.G., Novikov, R.G. Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials. Commun. Math. Phys. 174, 409-446 (1995) Zbl0843.35090MR1362172
  13. Grinevich P.G., Novikov S.P. Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state. Funkts. Anal. Prilozh. 22(1), 23-33 (1988), translation in Funct. Anal. Appl. 22(1), 19-27 (1988) Zbl0672.35074MR936696
  14. Kazeykina A.V. A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with non-singular scattering data. Inverse Problems. 28(5), 055017 (2012) Zbl1238.35134MR2923202
  15. Kazeykina A.V. Kazeykina A.V. Absence of conductivity-type solitons for the Novikov-Veselov equation at zero energy. Funct. Anal. Appl., 47(1), 64-66 (2013) Zbl1280.35127
  16. Kazeykina A.V. Absence of solitons with sufficient algebraic localization for the Novikov-Veselov equation at nonzero energy. Funct. Anal. Appl., 48(1), 24-35 (2014) Zbl1308.35250
  17. Kazeykina A.V., Novikov R.G. A large time asymptotics for transparent potentials for the Novikov–Veselov equation at positive energy. J. Nonlinear Math. Phys. 18(3), 377-400 (2011) Zbl1228.35203MR2846100
  18. Kazeykina A.V., Novikov R.G. Large time asymptotics for the Grinevich–Zakharov potentials. Bulletin des Sciences Mathématiques. 135, 374-382 (2011) Zbl1219.35237MR2799814
  19. Konopelchenko B., Moro A. Integrable equations in nonlinear geometrical optics. Studies in Applied Mathematics. 113(4), 325-352 (2004) Zbl1141.78302MR2094235
  20. Lassas M., Mueller J.L., Siltanen S., Stahel A. The Novikov-Veselov Equation and the Inverse Scattering Method, Part I: Analysis. Physica D. 241, 1322-1335 (2012) Zbl1248.35187MR2947348
  21. Manakov S.V. The inverse scattering method and two-dimensional evolution equations. Uspekhi Mat. Nauk. 31(5), 245–246 (1976) (in Russian) Zbl0345.35055MR467037
  22. Manakov S.V., Zakharov V.E., Bordag L.A., Its A.R., Matveev V.B. Two–dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Physics Letters A. 63(3), 205–206 (1977) 
  23. Nachman A.I. Global uniqueness for a two-dimensional inverse boundary value problem. Annals of Mathematics. 143, 71-96 (1995) Zbl0857.35135MR1370758
  24. Novikov R.G. The inverse scattering problem on a fixed energy level for the two–dimensional Schrödinger operator. Journal of Funct. Anal. 103, 409-463 (1992) Zbl0762.35077MR1151554
  25. Novikov R.G. Absence of exponentially localized solitons for the Novikov–Veselov equation at positive energy. Physics Letters A. 375, 1233-1235 (2011) Zbl1242.35196MR2770407
  26. Novikov S.P., Veselov A.P. Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations. Dokl. Akad. Nauk SSSR. 279, 20–24 (1984), translation in Sov. Math. Dokl. 30, 588-591 (1984) Zbl0613.35020MR769198
  27. Novikov S.P., Veselov A.P. Finite-zone, two-dimensional Schrödinger operators. Potential operators. Dokl. Akad. Nauk SSSR. 279, 784–788 (1984), translation in Sov. Math. Dokl. 30, 705–708 (1984) Zbl0602.35024MR771574
  28. Perry P.A. Miura maps and inverse scattering for the Novikov-Veselov equation. Analysis & PDE, to appear. arXiv: 1201.2385v2 (2012) MR3218811
  29. Tsai T.-Y. The Schrödinger operator in the plane. Inverse Problems. 9, 763-787 (1993) Zbl0797.35140MR1251205
  30. Vekua I.N. Generalized analytic functions. Oxford: Pergamon Press (1962) Zbl0100.07603MR150320

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.