Displaying similar documents to “Geometry of nuclear spaces. II - Linear topological invariants”

Unsolved Problems

N. Aronszajn, L. Gross, S. Kwapień, N. Nielsen, A. Pełczyński, A. Pietsch, L. Schwartz, P. Saphar, S. Chevet, R. Dudley, D. Garling, N. Kalton, B. Mitjagin, S. Rolewicz, E. Schock, J. Daleckiĭ, J. Dobrakov, B. Gelbaum, G. Henkin, L. Nachbin, N. Peck, L. Waelbroeck, P. Porcelli, M. Rao, M. Zerner, V. Zakharjuta (1970)

Studia Mathematica

Similarity:

1. The operator ideals and measures in linear spaces 469-472 2. Schauder bases and linear topological invariants 473-478 3. Various problems 479-483

Linear topological invariants of spaces of holomorphic functions in infinite dimension.

Nguyen Minh Ha, Le Mau Hai (1995)

Publicacions Matemàtiques

Similarity:

It is shown that if E is a Frechet space with the strong dual E* then H(E*), the space of holomorphic functions on E* which are bounded on every bounded set in E*, has the property (DN) when E ∈ (DN) and that H(E*) ∈ (Ω) when E ∈ (Ω) and either E* has an absolute basis or E is a Hilbert-Frechet-Montel space. Moreover the complementness of ideals J(V) consisting of holomorphic functions on E* which are equal to 0 on V in H(E*) for every nuclear Frechet space E with E ∈ (DN) ∩ (Ω) is stablished...

Compound invariants and embeddings of Cartesian products

P. Chalov, P. Djakov, V. Zahariuta (1999)

Studia Mathematica

Similarity:

New compound geometric invariants are constructed in order to characterize complemented embeddings of Cartesian products of power series spaces. Bessaga's conjecture is proved for the same class of spaces.