Characterization of subspaces and quotients of nuclear L f ( α , ) -spaces

Heikki Apiola

Compositio Mathematica (1983)

  • Volume: 50, Issue: 1, page 65-81
  • ISSN: 0010-437X

How to cite

top

Apiola, Heikki. "Characterization of subspaces and quotients of nuclear $L_f (\alpha ,\infty )$-spaces." Compositio Mathematica 50.1 (1983): 65-81. <http://eudml.org/doc/89619>.

@article{Apiola1983,
author = {Apiola, Heikki},
journal = {Compositio Mathematica},
keywords = {nuclear Frechet space; structure of subspaces and quotient of nuclear Köthe spaces; splitting of a short exact sequence of Frechet spaces},
language = {eng},
number = {1},
pages = {65-81},
publisher = {Martinus Nijhoff Publishers},
title = {Characterization of subspaces and quotients of nuclear $L_f (\alpha ,\infty )$-spaces},
url = {http://eudml.org/doc/89619},
volume = {50},
year = {1983},
}

TY - JOUR
AU - Apiola, Heikki
TI - Characterization of subspaces and quotients of nuclear $L_f (\alpha ,\infty )$-spaces
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 1
SP - 65
EP - 81
LA - eng
KW - nuclear Frechet space; structure of subspaces and quotient of nuclear Köthe spaces; splitting of a short exact sequence of Frechet spaces
UR - http://eudml.org/doc/89619
ER -

References

top
  1. [1] H. Ahonen: On nuclear Köthe spaces defined by Dragilev functions. Ann. Acad Sci. Fenn. Ser AI, Diss. 38 (1981). Zbl0483.46009MR640318
  2. [2] M. Alpseymen: Basic sequences in some nuclear Köthe sequence spaces. Thesis, University of Michigan, 1978. 
  3. [3] H. Apiola: Every nuclear Fréchet space is a quotient of a Köthe Schwartz space. Arch. Math.35 (1980) 559-573. Zbl0437.46004MR604256
  4. [4] E. Dubinsky: Infinite type power series subspaces of finite type power series spaces. Israel J. Math. 15 (1973) 257-281. Zbl0265.46016MR346483
  5. [5] E. Dubinsky: Infinite type power series subspaces of infinite type power series spaces. Israel J. Math.20 (1975) 359-368. Zbl0308.46013MR388038
  6. [6] E. Dubinsky: Basic sequences in (s). Studia Math.59 (1977) 283-293. Zbl0349.46010MR435790
  7. [7] E. Dubinsky: Basic sequences in a stable finite type power series space. Studia Math. Zbl0476.46009MR599141
  8. [8] E. Dubinsky: The structure of nuclear Fréchet spaces, Berlin- Heidelberg-New York, Springer Lecture Notes in Mathematics 720, 1979. Zbl0403.46005MR537039
  9. [9] E. Dubinsky and W. Robinson: Quotient spaces of (s) with basis. Studia Math. 63 (1977) 39-53. Zbl0393.46012MR515496
  10. [10] M.M. Dragilev: On regular bases in nuclear spaces. Amer. Math. Soc. Transl. (2) 93 (1970) 61-82(Engl. translation of Math. Sb.68 (110) (1965) 153-173. Zbl0206.11905MR192310
  11. [11] G. Köthe: Topological vector spaces I. Berlin- Heidelberg-New York, Springer1969. Zbl0179.17001
  12. [12] A. Pietsch: Nuclear locally convex spaces. Berlin- Heidelberg-New York, Springer1972. Zbl0236.46001MR350360
  13. [13] M.S. Ramanujan and B. Rosenberger: On λ(ø, P)-nuclearity. Comp. Math.34 (1977) 113-125. Zbl0347.46001
  14. [14] T. Terzioglu: Die diametrale Dimension von lokalkonvexen Räumen. Collect. Math.20 (1969) 49-99. Zbl0175.41602MR253016
  15. [15] D. Vogt: Charakterisierung der Unterräume von s. Math. Z.155 (1977) 109-117. Zbl0337.46015MR463885
  16. [16] D. Vogt: Subspaces and quotient spaces of (s). Functional Analysis, Surveys and Recent Results (Proc. Conf. Paderborn 1976), 167-187North-Holland1977. Zbl0373.46016MR625306
  17. [17] D. Vogt: Charakterisierung der Unterräume eines nucklearen stabilen Potenreihenraumes von endlichem Typ. To appear in Studia Math. Zbl0539.46009MR667314
  18. [18] D. Vogt: Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen. Preprint. Zbl0512.46003MR657522
  19. [19] D. Vogt and M.J. Wagner: Charakterisierung der Quotientenräume von s, To appear in Studia Math. 
  20. [20] D. Vogt and M.J. Wagner: Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräumen von unendlichem Typ. To appear in Studia Math. Zbl0402.46008MR646960
  21. [21] M.J. Wagner: Unterräume und Quotienten von Potenzreihenräumen. Dissertation, Wuppertal 1977. Zbl0456.46007
  22. [22] M.J. Wagner: Quotientenräume von stabilen Potenzreihenräumen endlichem Typs. Manuscripta Math.31 (1980) 97-109. Zbl0453.46010MR576492

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.