Displaying similar documents to “Un théorème de décomposition d'applications mesurables”

Sur les fonctions d'ensemble additives et continues

Wacław Sierpiński (1922)

Fundamenta Mathematicae

Similarity:

Soit E_0 un ensemble borné donné de points dans un espace à m dimensions, soit E un ensemble variable, contenu dans E_0 et mesurable (L). On appelle une fonction d'ensemble f(E) (dont la valeur f(E) est un nombre réel (fini) déterminé pour les sous - ensembles de E_0) additive (simplement) dans E_0, si sa valeur sur un ensemble somme de deux sous-ensembles mesurables de E_0 sans point commun est la somme de ses valeurs sur chacun de ces sous-ensembles. La fonction additive f(E) est dite...

Problèmes

Nicolas Lusin, Wacław Sierpiński, Paul Urysohn, Hugo Steinhaus, Stanisław Ruziewicz, Alfred Tajtelbaum-Tarski (1924)

Fundamenta Mathematicae

Similarity:

Contribution à la théorie des ensembles homéomorphes

M. Lavrentieff (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de donner des applications du théorème suivante: Théorème: S'il existe une correspondance bicontinue, univoque et réciproque entre deux ensembles donnés (situés dans un espace à m dimensions), il est possible de déterminer une correspondance de même nature entre les points de deux ensembles G_(δ) enfermant les ensembles donnes, la seconde correspondance coïncidant avec la première pour les points des deux ensembles donnés.

Problèmes

Stefan Banach, Wacław Sierpiński, Paul Alexandroff, Paul Urysohn (1924)

Fundamenta Mathematicae

Similarity: