The -adic gamma function and the congruences of Atkin and Swinnerton-Dyer
Lucien Van Hamme (1981-1982)
Groupe de travail d'analyse ultramétrique
Similarity:
Lucien Van Hamme (1981-1982)
Groupe de travail d'analyse ultramétrique
Similarity:
F. Beukers (1986-1987)
Groupe de travail d'analyse ultramétrique
Similarity:
Kenneth A. Ribet (1975-1976)
Groupe d'étude d'algèbre Groupe d'étude d'algèbre
Similarity:
Romeo Meštrović (2013)
Czechoslovak Mathematical Journal
Similarity:
Let be a prime, and let be the Fermat quotient of to base . In this note we prove that which is a generalization of a congruence due to Z. H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z. H. Sun, we show that which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum modulo that also generalizes...
Fernando Q. Gouvêa, Barry Mazur (1993)
Annales de l'institut Fourier
Similarity:
We show that the coefficients of the characteristic power series of Atkin’s U operator acting on overconvergent -adic modular forms of weight vary -adically continuously as functions of . Are they in fact Iwasawa functions of ?
M. Bhaskaran (1972)
Acta Arithmetica
Similarity:
J. Bovey (1976)
Acta Arithmetica
Similarity: