The category of a map and of a cohomology class
I. Berstein, Tudor Ganea (1962)
Fundamenta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
I. Berstein, Tudor Ganea (1962)
Fundamenta Mathematicae
Similarity:
Hilton, Peter (1997)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Klein, John R. (2002)
Algebraic & Geometric Topology
Similarity:
Timothy Porter (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. F. McClendon (1981)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
M. H. Eggar (1973)
Compositio Mathematica
Similarity:
C. Elvira-Donazar, L. J. Hernandez-Paricio (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jerrold Siegel (1980)
Fundamenta Mathematicae
Similarity:
Peter J. Witbooi (1995)
Publicacions Matemàtiques
Similarity:
We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.