The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Quelques propriétés de l’opérateur de Schrödinger - Δ + V

Singularités éliminables pour des équations semi-linéaires

Pierre Baras, Michel Pierre (1984)

Annales de l'institut Fourier

Similarity:

Étant donné L un opérateur différentiel d’ordre m sur un ouvert Ω de R N , K un compact de Ω , γ > 1 et γ ' = γ / ( γ - 1 ) , nous montrons que toute solution de “ L u + u γ = 0 sur Ω K , u 0 ” est solution de “ L u + u γ = 0 sur Ω ” dès que la W m , γ ' -capacité de K est nulle. Cette condition s’avère nécessaire quand L est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que ` ` L u + u | u | γ - 1 = μ , u | Ω = 0 ' ' μ est une mesure de Radon bornée sur Ω , a une solution si et seulement si μ ne charge pas les ensembles de W 2 , γ ' -capacité nulle.

Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle

Hajer Bahouri (2014-2015)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante 1 -oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes...

Intégrales de résolvantes et calcul symbolique

Francis Hirsch (1972)

Annales de l'institut Fourier

Similarity:

Soit f une transformée de Stieltjes. Notant H f un prolongement de la fonction f ( z - 1 ) à ( C R * { } ) , on définit, pour tout espace de Banach X et pour tout opérateur V sur X qui soit de domaine dense, fermé, d’ensemble résolvant contenant R * et qui vérifie sup λ > 0 ( I + λ V ) - 1 < , un opérateur H f ( V ) qui est un opérateur sur X de même nature que V . On montre que l’on a σ e [ H f ( V ) ] = H f [ σ e ( V ) ] (où σ e désigne le spectre étendu). En outre, l’opération H f a d’excellentes propriétés de stabilité. En particulier, si f 0 et si V est un potentiel abstrait, H f ( V ) est...