The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Behaviour at the boundary of the complex Monge-Ampère equation”

Kähler-Einstein metrics singular along a smooth divisor

Raffe Mazzeo (1999)

Journées équations aux dérivées partielles

Similarity:

In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor D . We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical...

The Dirichlet problem for the degenerate Monge-Ampère equation.

Luis A. Caffarelli, Louis Nirenberg, Joel Spruck (1986)

Revista Matemática Iberoamericana

Similarity:

Let Ω be a bounded convex domain in Rn with smooth, strictly convex boundary ∂Ω, i.e. the principal curvatures of ∂Ω are all positive. We study the problem of finding a convex function u in Ω such that: det (uij) = 0 in Ω u = φ given on ∂Ω.