Displaying similar documents to “The Riemann-Roch theorem on algebraic curves”

Algebro-geometric approach to the Ernst equation I. Mathematical Preliminaries

O. Richter, C. Klein (1997)

Banach Center Publications

Similarity:

1. Introduction. It is well known that methods of algebraic geometry and, in particular, Riemann surface techniques are well suited for the solution of nonlinear integrable equations. For instance, for nonlinear evolution equations, so called 'finite gap' solutions have been found by the help of these methods. In 1989 Korotkin [9] succeeded in applying these techniques to the Ernst equation, which is equivalent to Einstein's vacuum equation for axisymmetric stationary fields. But, the...

A note on the solvability of homogeneous Riemann boundary problem with infinity index

Juan Bory-Reyes (2021)

Communications in Mathematics

Similarity:

In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.

On the theorem of de Franchis

Alan Howard, Andrew J. Sommese (1983)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Riemann problem on the double of a multiply connected circular region

V. V. Mityushev (1997)

Annales Polonici Mathematici

Similarity:

The Riemann problem has been solved in [9] for an arbitrary closed Riemann surface in terms of the principal functionals. This paper is devoted to solution of the problem only for the double of a multiply connected region and can be treated as complementary to [9,1]. We obtain a complete solution of the Riemann problem in that particular case. The solution is given in analytic form by a Poincaré series.