Displaying similar documents to “Hyperbolic dynamics of Euler-Lagrange flows on prescribed energy levels”

Geometry of fluid motion

Boris Khesin (2002-2003)

Séminaire Équations aux dérivées partielles


We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [].

On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid

Alexander Shnirelman (1999)

Journées équations aux dérivées partielles


In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady...