On the construction of fundamental solutions for differential operators on nilpotent groups
Anders Melin (1981)
Journées équations aux dérivées partielles
Similarity:
Anders Melin (1981)
Journées équations aux dérivées partielles
Similarity:
Nick Dungey, A. ter Elst, Derek Robinson (1999)
Colloquium Mathematicae
Similarity:
We examine the asymptotic, or large-time, behaviour of the semigroup kernel associated with a finite sum of homogeneous subcoercive operators acting on a connected Lie group of polynomial growth. If the group is nilpotent we prove that the kernel is bounded by a convolution of two Gaussians whose orders correspond to the highest and lowest orders of the homogeneous subcoercive components of the generator. Moreover we establish precise asymptotic estimates on the difference of the kernel...
Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)
RACSAM
Similarity:
Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.
Crvenković, Siniša, Tasić, Vladimir (2007)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Jacek Zienkiewicz (2003)
Colloquium Mathematicae
Similarity:
Let G be the simplest nilpotent Lie group of step 3. We prove that the densities of the semigroup generated by the sublaplacian on G are not real-analytic.
Linda P. Rothschild (1983)
Journées équations aux dérivées partielles
Similarity:
Charbonnel, Jean-Yves, Moreau, Anne (2010)
Documenta Mathematica
Similarity:
Michel Dubois-Violette, Todor Popov (2013)
Publications de l'Institut Mathématique
Similarity:
Andrzej Daszkiewicz, Witold Kraśkiewicz, Tomasz Przebinda (2005)
Open Mathematics
Similarity:
We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual...
Irene Venturi (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: