Displaying similar documents to “Measures on the geometric limit set in higher rank symmetric spaces”

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Gisella Croce, Catherine Lacour, Gérard Michaille (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order 1 ε concentrated on an ε -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.

Multiparameter singular integrals and maximal functions

Fulvio Ricci, Elias M. Stein (1992)

Annales de l'institut Fourier

Similarity:

We prove L p -boundedness for a class of singular integral operators and maximal operators associated with a general k -parameter family of dilations on R n . This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain “minimal” cancellation is required of the kernels, depending on the given set of dilations.