Displaying similar documents to “Lattices in which a < b c implies a b or a c

𝒵 -distributive function lattices

Marcel Erné (2013)

Mathematica Bohemica

Similarity:

It is known that for a nonempty topological space X and a nonsingleton complete lattice Y endowed with the Scott topology, the partially ordered set [ X , Y ] of all continuous functions from X into Y is a continuous lattice if and only if both Y and the open set lattice 𝒪 X are continuous lattices. This result extends to certain classes of 𝒵 -distributive lattices, where 𝒵 is a subset system replacing the system 𝒟 of all directed subsets (for which the 𝒟 -distributive complete lattices are just...

Join-closed and meet-closed subsets in complete lattices

František Machala, Vladimír Slezák (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

To every subset A of a complete lattice L we assign subsets J ( A ) , M ( A ) and define join-closed and meet-closed sets in L . Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.

An extension of the ordering based on nullnorms

Emel Aşıcı (2019)

Kybernetika

Similarity:

In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the F -partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.

Lattices of Scott-closed sets

Weng Kin Ho, Dong Sheng Zhao (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A dcpo P is continuous if and only if the lattice C ( P ) of all Scott-closed subsets of P is completely distributive. However, in the case where P is a non-continuous dcpo, little is known about the order structure of C ( P ) . In this paper, we study the order-theoretic properties of C ( P ) for general dcpo’s P . The main results are: (i) every C ( P ) is C-continuous; (ii) a complete lattice L is isomorphic to C ( P ) for a complete semilattice P if and only if L is weak-stably C-algebraic; (iii) for any two complete...