Displaying similar documents to “A Clarke–Ledyaev Type Inequality for Certain Non–Convex Sets”

On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez, Annamaria Montanari (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous –convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives...

The Space of Differences of Convex Functions on [0, 1]

Zippin, M. (2000)

Serdica Mathematical Journal

Similarity:

∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany). The space K[0, 1] of differences of convex functions on the closed interval [0, 1] is investigated as a dual Banach space. It is proved that a continuous function f on [0, 1] belongs to K[0, 1] ...

On regularization in superreflexive Banach spaces by infimal convolution formulas

Manuel Cepedello-Boiso (1998)

Studia Mathematica

Similarity:

We present here a new method for approximating functions defined on superreflexive Banach spaces by differentiable functions with α-Hölder derivatives (for some 0 < α≤ 1). The smooth approximation is given by means of an explicit formula enjoying good properties from the minimization point of view. For instance, for any function f which is bounded below and uniformly continuous on bounded sets this formula gives a sequence of Δ-convex C 1 , α functions converging to f uniformly on bounded...