The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Functions of four variables which satisfy both the heat equation and the Laplace equation in three variables - II”

Short-time heat flow and functions of bounded variation in R N

Michele Miranda, Diego Pallara, Fabio Paronetto, Marc Preunkert (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove a characterisation of sets with finite perimeter and B V functions in terms of the short time behaviour of the heat semigroup in R N . For sets with smooth boundary a more precise result is shown.

The phase of the Daubechies filters.

Djalil Kateb, Pierre Gilles Lemarié-Rieusset (1997)

Revista Matemática Iberoamericana

Similarity:

We give the first term of the asymptotic development for the phase of the N-th (minimum-phased) Daubechies filter as N goes to +∞. We obtain this result through the description of the complex zeros of the associated polynomial of degree 2N+1.

Cramér's formula for Heisenberg manifolds

Mahta Khosravi, John A. Toth (2005)

Annales de l'institut Fourier

Similarity:

Let R ( λ ) be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that 1 T | R ( t ) | 2 d t = c T 5 2 + O δ ( T 9 4 + δ ) , where c is a specific nonzero constant and δ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that R ( t ) = O δ ( t 3 4 + δ ) .The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the 2 n + 1 -dimensional case. ...