Displaying similar documents to “Representations of locally distributive lattices”

𝒵 -distributive function lattices

Marcel Erné (2013)

Mathematica Bohemica

Similarity:

It is known that for a nonempty topological space X and a nonsingleton complete lattice Y endowed with the Scott topology, the partially ordered set [ X , Y ] of all continuous functions from X into Y is a continuous lattice if and only if both Y and the open set lattice 𝒪 X are continuous lattices. This result extends to certain classes of 𝒵 -distributive lattices, where 𝒵 is a subset system replacing the system 𝒟 of all directed subsets (for which the 𝒟 -distributive complete lattices are just...

Meet-distributive lattices have the intersection property

Henri Mühle (2023)

Mathematica Bohemica

Similarity:

This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and...

Varieties of Distributive Rotational Lattices

Gábor Czédli, Ildikó V. Nagy (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A rotational lattice is a structure L ; , , g where L = L ; , is a lattice and g is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.