Displaying similar documents to “Some comments and examples on generation of (hyper-)archimedean -groups and f -rings”

Non-transitive generalizations of subdirect products of linearly ordered rings

Jiří Rachůnek, Dana Šalounová (2003)

Czechoslovak Mathematical Journal

Similarity:

Weakly associative lattice rings (wal-rings) are non-transitive generalizations of lattice ordered rings (l-rings). As is known, the class of l-rings which are subdirect products of linearly ordered rings (i.e. the class of f-rings) plays an important role in the theory of l-rings. In the paper, the classes of wal-rings representable as subdirect products of to-rings and ao-rings (both being non-transitive generalizations of the class of f-rings) are characterized and the class of wal-rings...

The H S P -Classes of Archimedean l -groups with Weak Unit

Bernhard Banaschewski, Anthony Hager (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

W denotes the class of abstract algebras of the title (with homomorphisms preserving unit). The familiar H , S , and P from universal algebra are here meant in W . and denote the integers and the reals, with unit 1, qua W -objects. V denotes a non-void finite set of positive integers. Let 𝒢 W be non-void and not { { 0 } } . We show ...

On f -rings that are not formally real

James J. Madden (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Henriksen and Isbell showed in 1962 that some commutative rings admit total orderings that violate equational laws (in the language of lattice-ordered rings) that are satisfied by all totally-ordered fields. In this paper, we review the work of Henriksen and Isbell on this topic, construct and classify some examples that illustrate this phenomenon using the valuation theory of Hion (in the process, answering a question posed in [E]) and, finally, prove that a base for the equational...