Displaying similar documents to “Espace des germes d'arcs réels et série de Poincaré d'un ensemble semi-algébrique”

Fonctions composées différentiables : cas algébrique

Jean-Claude Tougeron (1980)

Annales de l'institut Fourier

Similarity:

Soit f un morphisme propre et de Nash d’un ouvert Ω de R n dans un ouvert Ω ' de R p . Nous démontrons que l’image par f * de l’algèbre C ( Ω ' ) des fonctions réelles C dans Ω ' est fermée dans C ( Ω ) munie de sa topologie habituelle d’espace de Fréchet. Ce résultat généralise, dans le cas algébrique, un résultat de G. Glaeser sur les fonctions composées différentiables.

Sur le théorème des fonctions composées différentiables

Jean-Jacques Risler (1982)

Annales de l'institut Fourier

Similarity:

Soit f : X Y un morphisme propre relativement algébrique entre espaces semi-analytiques. On montre que si 𝒞 ( Y ) désigne l’anneau des fonctions de classe 𝒞 sur Y , l’image par f de 𝒞 ( Y ) est fermée dans 𝒞 ( X ) muni de sa topologie naturelle d’espace de Frechet ; ceci généralise un résultat précédent de J.-C. Tougeron (lui-même généralisant un résultat de Glaeser) qui traite du cas semi-algébrique. La méthode est tout à fait analogue et utilise des propriétés algébriques de l’anneau des fonctions Nash-analytiques...