Displaying similar documents to “Quantization and Morita equivalence for constant Dirac structures on tori”

Gauge equivalence of Dirac structures and symplectic groupoids

Henrique Bursztyn, Olga Radko (2003)

Annales de l’institut Fourier

Similarity:

We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence...

A characterization of coboundary Poisson Lie groups and Hopf algebras

Stanisław Zakrzewski (1997)

Banach Center Publications

Similarity:

We show that a Poisson Lie group (G,π) is coboundary if and only if the natural action of G×G on M=G is a Poisson action for an appropriate Poisson structure on M (the structure turns out to be the well known π + ). We analyze the same condition in the context of Hopf algebras. A quantum analogue of the π + structure on SU(N) is described in terms of generators and relations as an example.

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...