The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces”

On the Range of the Fourier Transform Associated with the Spherical Mean Operator

Jelassi, M., Rachdi, L. (2004)

Fractional Calculus and Applied Analysis

Similarity:

We characterize the range of some spaces of functions by the Fourier transform associated with the spherical mean operator R and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schawrtz theorems.

Spectrum of Functions for the Dunkl Transform on R^d

Mejjaoli, Hatem, Trimèche, Khalifa (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 42B10 In this paper, we establish real Paley-Wiener theorems for the Dunkl transform on R^d. More precisely, we characterize the functions in the Schwartz space S(R^d) and in L^2k(R^d) whose Dunkl transform has bounded, unbounded, convex and nonconvex support.

An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators

Kamoun, Lotfi (2005)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 42B10, 43A32. In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.

An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform

Mejjaoli, Hatem (2006)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: Primary 35R10, Secondary 44A15 We establish an analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform FD,B on R(d+1,+). We deduce an analogue of Gelfand-Shilov, Hardy, Cowling-Price and Morgan theorems on R(d+1,+) by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.

Dunkl hyperbolic equations.

Mejjaoli, Hatem (2008)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Cauchy-Type Problem for Diffusion-Wave Equation with the Riemann-Liouville Partial Derivative

Kilbas, Anatoly, Trujillo, Juan, Voroshilov, Aleksandr (2005)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 35A15, 44A15, 26A33 The paper is devoted to the study of the Cauchy-type problem for the differential equation [...] involving the Riemann-Liouville partial fractional derivative of order α > 0 [...] and the Laplace operator.

On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin

Südland, Norbert, Baumann, Gerd (2004)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 44A05, 46F12, 28A78 We prove that Dirac’s (symmetrical) delta function and the Hausdorff dimension function build up a pair of reciprocal functions. Our reasoning is based on the theorem by Mellin. Applications of the reciprocity relation demonstrate the merit of this approach.

On the range of the Fourier transform connected with Riemann-Liouville operator

Lakhdar Tannech Rachdi, Ahlem Rouz (2009)

Annales mathématiques Blaise Pascal

Similarity:

We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator α , α 0 and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.