The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Introduction to mean curvature flow”

Convexity estimates for flows by powers of the mean curvature

Felix Schulze (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We study the evolution of a closed, convex hypersurface in n + 1 in direction of its normal vector, where the speed equals a power k 1 of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to 1 , depending only on k and n , then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere. ...

How to produce a Ricci flow via Cheeger–Gromoll exhaustion

Esther Cabezas-Rivas, Burkhard Wilking (2015)

Journal of the European Mathematical Society

Similarity:

We prove short time existence for the Ricci flow on open manifolds of non-negative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger–Gromoll convex exhaustion and solving the singular initial value problem for the Ricci flow on these closed manifolds, we obtain a sequence of closed solutions of the Ricci flow with non-negative complex sectional curvature which subconverge to a Ricci flow on the open...

Discrete anisotropic curvature flow of graphs

Klaus Deckelnick, Gerhard Dziuk (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The evolution of –dimensional graphs under a weighted curvature flow is approximated by linear finite elements. We obtain optimal error bounds for the normals and the normal velocities of the surfaces in natural norms. Furthermore we prove a global existence result for the continuous problem and present some examples of computed surfaces.