Displaying similar documents to “Tracking control of a vibrating string with an interior mass viewed as delay system”

Controllability of the Strongly Damped Wave Equation with Impulses and Delay

Hugo Leiva (2017)

Nonautonomous Dynamical Systems

Similarity:

Evading fixed point theorems we prove the interior approximate controllability of the following semilinear strongly damped wave equation with impulses and delay [...] in the space Z1/2 = D((−Δ)1/2)×L2(Ω),where r > 0 is the delay, Γ = (0, τ)×Ω, ∂Γ = (0, τ) × ∂Ω, Γr = [−r, 0] × Ω, (ϕ,ψ) ∈ C([−r, 0]; Z1/2), k = 1, 2, . . . , p, Ω is a bounded domain in ℝℕ(ℕ ≥ 1), ω is an open nonempty subset of , 1 ω denotes the characteristic function of the set ω, the distributed control u ∈ L2(0,...

Exact controllability of the 1-d wave equation from a moving interior point

Carlos Castro (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the linear wave equation with Dirichlet boundary conditions in a bounded interval, and with a control acting on a moving point. We give sufficient conditions on the trajectory of the control in order to have the exact controllability property.

Analytic controllability of the wave equation over a cylinder

Brice Allibert (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We analyze the controllability of the wave equation on a cylinder when the control acts on the boundary, that does not satisfy the classical geometric control condition. We obtain precise estimates on the analyticity of reachable functions. As the control time increases, the degree of analyticity that is required for a function to be reachable decreases as an inverse power of time. We conclude that any analytic function can be reached if that control time is large enough. In the...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system...

Soft variable structure control in time-delay systems with saturating input

Przemysław Ignaciuk (2021)

Kybernetika

Similarity:

In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained....

On a class of linear delay systems often arising in practice

Michel Fliess, Hugues Mounier (2001)

Kybernetika

Similarity:

We study the tracking control of linear delay systems. It is based on an algebraic property named π -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.

On the stabilization of laminated beams with delay

Kassimu Mpungu, Tijani A. Apalara, Mukhiddin Muminov (2021)

Applications of Mathematics

Similarity:

Of concern in this paper is the laminated beam system with frictional damping and an internal constant delay term in the transverse displacement. Under suitable assumptions on the weight of the delay, we establish that the system's energy decays exponentially in the case of equal wave speeds of propagation, and polynomially in the case of non-equal wave speeds.