On subsequence sums of a zero-sum free sequence.
Sun, Fang (2007)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Sun, Fang (2007)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Gao, Weidong, Li, Yuanlin, Peng, Jiangtao, Sun, Fang (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Cummings, L.J., Mays, M. (2001)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Schmid, Wolfgang A. (2001)
Integers
Similarity:
Bajnok, Béla, Ruzsa, Imre (2003)
Integers
Similarity:
Benjamin Girard (2010)
Colloquium Mathematicae
Similarity:
We study the minimal number of elements of maximal order occurring in a zero-sumfree sequence over a finite Abelian p-group. For this purpose, and in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, our method implies that, if we denote by exp(G) the exponent of the finite Abelian p-group G considered, every zero-sumfree sequence S with maximal possible...
Luise-Charlotte Kappe, M. J. Tomkinson (1998)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Hans Lausch (1982)
Archivum Mathematicum
Similarity:
A. Abdollahi, A. Mohammadi Hassanabadi (2004)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Anne C. Morel (1968)
Colloquium Mathematicae
Similarity:
David B. Penman, Matthew D. Wells (2014)
Acta Arithmetica
Similarity:
We call a subset A of an abelian group G sum-dominant when |A+A| > |A-A|. If |A⨣A| > |A-A|, where A⨣A comprises the sums of distinct elements of A, we say A is restricted-sum-dominant. In this paper we classify the finite abelian groups according to whether or not they contain sum-dominant sets (respectively restricted-sum-dominant sets). We also consider how much larger the sumset can be than the difference set in this context. Finally, generalising work of Zhao, we provide asymptotic...