The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mythical numbers.”

On Robin’s criterion for the Riemann hypothesis

YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, Patrick Solé (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality σ ( n ) : = d | n d < e γ n log log n is satisfied for n 5041 , where γ denotes the Euler(-Mascheroni) constant. We show by elementary methods that if n 37 does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that n must be divisible by a fifth power > 1 . As consequence we obtain that RH holds true iff every natural number divisible by...

Palindromic powers.

Hernández, Santos Hernández, Luca, Florian (2006)

Revista Colombiana de Matemáticas

Similarity:

An arithmetic function arising from Carmichael’s conjecture

Florian Luca, Paul Pollack (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let φ denote Euler’s totient function. A century-old conjecture of Carmichael asserts that for every n , the equation φ ( n ) = φ ( m ) has a solution m n . This suggests defining F ( n ) as the number of solutions m to the equation φ ( n ) = φ ( m ) . (So Carmichael’s conjecture asserts that F ( n ) 2 always.) Results on F are scattered throughout the literature. For example, Sierpiński conjectured, and Ford proved, that the range of F contains every natural number k 2 . Also, the maximal order of F has been investigated by Erdős and Pomerance....