Displaying similar documents to “An Omega theorem on differences of two squares.”

On the riemann zeta-function and the divisor problem

Aleksandar Ivić (2004)

Open Mathematics

Similarity:

Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of ς 1 2 + i t . If E * t = E t - 2 π Δ * t / 2 π with Δ * x = - Δ x + 2 Δ 2 x - 1 2 Δ 4 x , then we obtain 0 T E * t 4 d t e T 16 / 9 + ε . We also show how our method of proof yields the bound r = 1 R t r - G t r + G ς 1 2 + i t 2 d t 4 e T 2 + e G - 2 + R G 4 T ε , where T 1/5+ε≤G≪T, T

Some subclasses of close-to-convex functions

Adam Lecko (1993)

Annales Polonici Mathematici

Similarity:

For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes C β ( α ) defined as follows: a function f regular in U = z: |z| < 1 of the form f ( z ) = z + n = 1 a n z n , z ∈ U, belongs to the class C β ( α ) if R e e i β ( 1 - α ² z ² ) f ' ( z ) < 0 for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in C β ( α ) are examined.