Displaying similar documents to “Kneading theory for a family of circle maps with one discontinuity.”

Transitive sensitive subsystems for interval maps

Sylvie Ruette (2005)

Studia Mathematica

Similarity:

We prove that for continuous interval maps the existence of a non-empty closed invariant subset which is transitive and sensitive to initial conditions is implied by positive topological entropy and implies chaos in the sense of Li-Yorke, and we exhibit examples showing that these three notions are distinct.

A characterization of the kneading pair for bimodal degree one circle maps

Lluis Alsedà, Antonio Falcó (1997)

Annales de l'institut Fourier

Similarity:

For continuous maps on the interval with finitely many monotonicity intervals, the kneading theory developed by Milnor and Thurston gives a symbolic description of the dynamics of a given map. This description is given in terms of the kneading invariants which essentially consists in the symbolic orbits of the turning points of the map under consideration. Moreover, this theory also describes a classification of all such maps through theses invariants. For continuous bimodal degree one...

Topological sequence entropy for maps of the circle

Roman Hric (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A continuous map f of the interval is chaotic iff there is an increasing sequence of nonnegative integers T such that the topological sequence entropy of f relative to T , h T ( f ) , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that h T ( f ) = 0 ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact...