Displaying similar documents to “Stationary measures for random walks in a random environment with random scenery.”

Position dependent random maps in one and higher dimensions

Wael Bahsoun, Paweł Góra (2005)

Studia Mathematica

Similarity:

A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. We study random maps with position dependent probabilities on the interval and on a bounded domain of ℝⁿ. Sufficient conditions for the existence of an absolutely continuous invariant measure for a random map with position dependent probabilities on the interval and on a bounded domain of ℝⁿ are the main results.

The quenched invariance principle for random walks in random environments admitting a bounded cycle representation

Jean-Dominique Deuschel, Holger Kösters (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman ( (2004) 219–244) to the non-reversible setting.

A note on correlation coefficient between random events

Czesław Stępniak (2015)

Discussiones Mathematicae Probability and Statistics

Similarity:

Correlation coefficient is a well known measure of (linear) dependence between random variables. In his textbook published in 1980 L.T. Kubik introduced an analogue of such measure for random events A and B and studied its basic properties. We reveal that this measure reduces to the usual correlation coefficient between the indicator functions of A and B. In consequence the resuts by Kubik are obtained and strenghted directly. This is essential because the textbook is recommended by...

Discrete random processes with memory: Models and applications

Tomáš Kouřim, Petr Volf (2020)

Applications of Mathematics

Similarity:

The contribution focuses on Bernoulli-like random walks, where the past events significantly affect the walk's future development. The main concern of the paper is therefore the formulation of models describing the dependence of transition probabilities on the process history. Such an impact can be incorporated explicitly and transition probabilities modulated using a few parameters reflecting the current state of the walk as well as the information about the past path. The behavior...