How a centred random walk on the affine group goes to infinity
- [1] Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 3, page 371-384
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBrofferio, Sara. "How a centred random walk on the affine group goes to infinity." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 371-384. <http://eudml.org/doc/77767>.
@article{Brofferio2003,
affiliation = {Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)},
author = {Brofferio, Sara},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walks on the affine group; limit theorems; invariant measure; stability},
language = {eng},
number = {3},
pages = {371-384},
publisher = {Elsevier},
title = {How a centred random walk on the affine group goes to infinity},
url = {http://eudml.org/doc/77767},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Brofferio, Sara
TI - How a centred random walk on the affine group goes to infinity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 371
EP - 384
LA - eng
KW - random walks on the affine group; limit theorems; invariant measure; stability
UR - http://eudml.org/doc/77767
ER -
References
top- [1] M. Babillot, P. Bougerol, L. Elie, The random difference equation Xn=AnXn−1+Bn in the critical case, Ann. Probab.25 (1) (1997) 478-493. Zbl0873.60045
- [2] D.I. Cartwright, V.A. Kaĭmanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble)44 (4) (1994) 1243-1288. Zbl0809.60010MR1306556
- [3] L. Élie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. Sci. École Norm. Sup. (4)15 (2) (1982) 257-364. Zbl0509.60070MR683637
- [4] R.F. Engle, T. Bollerslev, Modelling the persistence of conditional variances, Econometric Rev.5 (1) (1986) 1-87, With comments and a reply by the authors. Zbl0619.62105MR876792
- [5] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab.1 (1) (1991) 126-166. Zbl0724.60076MR1097468
- [6] C.M. Goldie, R.A. Maller, Stability of perpetuities, Ann. Probab.28 (3) (2000) 1195-1218. Zbl1023.60037MR1797309
- [7] A.K. Grincevičius, A central limit theorem for the group of linear transformations of the line, Dokl. Akad. Nauk SSSR219 (1974) 23-26. Zbl0326.60021MR397820
- [8] Y. Guivarc'h, M. Keane, B. Roynette, Marches aléatoires sur les groupes de Lie, Lecture Notes in Math., 624, Springer-Verlag, Berlin, 1977. Zbl0367.60081MR517359
- [9] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math.131 (1973) 207-248. Zbl0291.60029MR440724
- [10] É. Le Page, M. Peigné, A local limit theorem on the semi-direct product of R∗+ and Rd, Ann. Inst. H. Poincaré Probab. Statist.33 (2) (1997) 223-252. Zbl0881.60018
- [11] D.F. Nicholls, B.G. Quinn, Random Coefficient Autoregressive Models: An Introduction, Lecture Notes in Physics, 151, Springer-Verlag, New York, 1982. Zbl0497.62081MR671255
- [12] D. Revuz, Markov Chains, North-Holland Mathematical Library, 11, North-Holland, Amsterdam, 1975. Zbl0332.60045MR758799
- [13] W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. Appl. Probab.11 (4) (1979) 750-783. Zbl0417.60073MR544194
- [14] Yor M. (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Revista Matemática Iberoamericana, Madrid, 1997, A collection of research papers. Zbl0889.00015MR1648653
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.