How a centred random walk on the affine group goes to infinity

Sara Brofferio[1]

  • [1] Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 3, page 371-384
  • ISSN: 0246-0203

How to cite

top

Brofferio, Sara. "How a centred random walk on the affine group goes to infinity." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 371-384. <http://eudml.org/doc/77767>.

@article{Brofferio2003,
affiliation = {Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)},
author = {Brofferio, Sara},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walks on the affine group; limit theorems; invariant measure; stability},
language = {eng},
number = {3},
pages = {371-384},
publisher = {Elsevier},
title = {How a centred random walk on the affine group goes to infinity},
url = {http://eudml.org/doc/77767},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Brofferio, Sara
TI - How a centred random walk on the affine group goes to infinity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 371
EP - 384
LA - eng
KW - random walks on the affine group; limit theorems; invariant measure; stability
UR - http://eudml.org/doc/77767
ER -

References

top
  1. [1] M. Babillot, P. Bougerol, L. Elie, The random difference equation Xn=AnXn−1+Bn in the critical case, Ann. Probab.25 (1) (1997) 478-493. Zbl0873.60045
  2. [2] D.I. Cartwright, V.A. Kaĭmanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble)44 (4) (1994) 1243-1288. Zbl0809.60010MR1306556
  3. [3] L. Élie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. Sci. École Norm. Sup. (4)15 (2) (1982) 257-364. Zbl0509.60070MR683637
  4. [4] R.F. Engle, T. Bollerslev, Modelling the persistence of conditional variances, Econometric Rev.5 (1) (1986) 1-87, With comments and a reply by the authors. Zbl0619.62105MR876792
  5. [5] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab.1 (1) (1991) 126-166. Zbl0724.60076MR1097468
  6. [6] C.M. Goldie, R.A. Maller, Stability of perpetuities, Ann. Probab.28 (3) (2000) 1195-1218. Zbl1023.60037MR1797309
  7. [7] A.K. Grincevičius, A central limit theorem for the group of linear transformations of the line, Dokl. Akad. Nauk SSSR219 (1974) 23-26. Zbl0326.60021MR397820
  8. [8] Y. Guivarc'h, M. Keane, B. Roynette, Marches aléatoires sur les groupes de Lie, Lecture Notes in Math., 624, Springer-Verlag, Berlin, 1977. Zbl0367.60081MR517359
  9. [9] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math.131 (1973) 207-248. Zbl0291.60029MR440724
  10. [10] É. Le Page, M. Peigné, A local limit theorem on the semi-direct product of R∗+ and Rd, Ann. Inst. H. Poincaré Probab. Statist.33 (2) (1997) 223-252. Zbl0881.60018
  11. [11] D.F. Nicholls, B.G. Quinn, Random Coefficient Autoregressive Models: An Introduction, Lecture Notes in Physics, 151, Springer-Verlag, New York, 1982. Zbl0497.62081MR671255
  12. [12] D. Revuz, Markov Chains, North-Holland Mathematical Library, 11, North-Holland, Amsterdam, 1975. Zbl0332.60045MR758799
  13. [13] W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. Appl. Probab.11 (4) (1979) 750-783. Zbl0417.60073MR544194
  14. [14] Yor M. (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Revista Matemática Iberoamericana, Madrid, 1997, A collection of research papers. Zbl0889.00015MR1648653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.