Flag Manifolds
D. V. Alekseevsky (1997)
Zbornik Radova
Similarity:
D. V. Alekseevsky (1997)
Zbornik Radova
Similarity:
Paulo R. C. Ruffino, Luiz A. B. San Martin (2001)
Archivum Mathematicum
Similarity:
With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary ). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides...
M. Welleda Baldoni Silva (1979)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Chloup, Véronique (1995)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Similarity:
Tisseur, Françoise, Graillat, Stef (2006)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Louis Michel, Luigi A. Radicati (1973)
Annales de l'I.H.P. Physique théorique
Similarity:
Tomasz Przebinda (2006)
Open Mathematics
Similarity:
In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.