Algorithm 42. Enclosure of a point to the minimum spanning tree
G. Trybuś (1976)
Applicationes Mathematicae
Similarity:
G. Trybuś (1976)
Applicationes Mathematicae
Similarity:
Sagan, Bruce E. (2009)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Drmota, Michael, Prodinger, Helmut (2002)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Masayoshi Matsushita, Yota Otachi, Toru Araki (2015)
Discussiones Mathematicae Graph Theory
Similarity:
Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that [k/2] ≤ cist(G) ≤ k − 1 for any k-tree G. Then we show that for any p ∈ {[k/2], . . . , k − 1}, there exist infinitely many k-trees G such...
Ivan Gutman, Yeong-Nan Yeh (1993)
Publications de l'Institut Mathématique
Similarity:
Z. A. Łomnicki (1973)
Applicationes Mathematicae
Similarity:
A. Kośliński (1987)
Applicationes Mathematicae
Similarity:
Đuro Kurepa (1968)
Publications de l'Institut Mathématique
Similarity:
H. J. Olivié (1982)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Similarity:
Tony W. Lai, Derick Wood (1994)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Similarity:
Chaudhuri, R., Höft, H. (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity: