Displaying similar documents to “Approximation of crystalline dendrite growth in two space dimensions.”

Computational studies of non-local anisotropic Allen-Cahn equation

Michal Beneš, Shigetoshi Yazaki, Masato Kimura (2011)

Mathematica Bohemica

Similarity:

The paper presents the results of numerical solution of the Allen-Cahn equation with a non-local term. This equation originally mentioned by Rubinstein and Sternberg in 1992 is related to the mean-curvature flow with the constraint of constant volume enclosed by the evolving curve. We study this motion approximately by the mentioned PDE, generalize the problem by including anisotropy and discuss the computational results obtained.

A computational approach to fractures in crystal growth

Matteo Novaga, Emanuele Paolini (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.

Forced anisotropic mean curvature flow of graphs in relative geometry

Dieu Hung Hoang, Michal Beneš (2014)

Mathematica Bohemica

Similarity:

The paper is concerned with the graph formulation of forced anisotropic mean curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical scheme based on the method of lines is presented. Computational results with various anisotropy settings are shown and discussed.

Two examples of fattening for the curvature flow with a driving force

Giovanni Bellettini, Maurizio Paolini (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We provide two examples of a regular curve evolving by curvature with a forcing term, which degenerates in a set having an interior part after a finite time.