The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Asymptotically optimal tree-packings in regular graphs.”

A Note on Uniquely Embeddable Forests

Justyna Otfinowska, Mariusz Woźniak (2013)

Discussiones Mathematicae Graph Theory

Similarity:

Let F be a forest of order n. It is well known that if F 6= Sn, a star of order n, then there exists an embedding of F into its complement F. In this note we consider a problem concerning the uniqueness of such an embedding.

Packing the Hypercube

David Offner (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph that is a subgraph of some n-dimensional hypercube Qn. For sufficiently large n, Stout [20] proved that it is possible to pack vertex- disjoint copies of G in Qn so that any proportion r < 1 of the vertices of Qn are covered by the packing. We prove an analogous theorem for edge-disjoint packings: For sufficiently large n, it is possible to pack edge-disjoint copies of G in Qn so that any proportion r < 1 of the edges of Qn are covered by the packing.

Packing Trees Into n-Chromatic Graphs

András Gyárfás (2014)

Discussiones Mathematicae Graph Theory

Similarity:

We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.

Packing Coloring of Some Undirected and Oriented Coronae Graphs

Daouya Laïche, Isma Bouchemakh, Éric Sopena (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set of vertices V(G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the p-corona of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of p-coronae...