A Note on Uniquely Embeddable Forests

Justyna Otfinowska; Mariusz Woźniak

Discussiones Mathematicae Graph Theory (2013)

  • Volume: 33, Issue: 1, page 193-201
  • ISSN: 2083-5892

Abstract

top
Let F be a forest of order n. It is well known that if F 6= Sn, a star of order n, then there exists an embedding of F into its complement F. In this note we consider a problem concerning the uniqueness of such an embedding.

How to cite

top

Justyna Otfinowska, and Mariusz Woźniak. "A Note on Uniquely Embeddable Forests." Discussiones Mathematicae Graph Theory 33.1 (2013): 193-201. <http://eudml.org/doc/267848>.

@article{JustynaOtfinowska2013,
abstract = {Let F be a forest of order n. It is well known that if F 6= Sn, a star of order n, then there exists an embedding of F into its complement F. In this note we consider a problem concerning the uniqueness of such an embedding.},
author = {Justyna Otfinowska, Mariusz Woźniak},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {packings of graphs; uniquely embeddable graphs},
language = {eng},
number = {1},
pages = {193-201},
title = {A Note on Uniquely Embeddable Forests},
url = {http://eudml.org/doc/267848},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Justyna Otfinowska
AU - Mariusz Woźniak
TI - A Note on Uniquely Embeddable Forests
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 1
SP - 193
EP - 201
AB - Let F be a forest of order n. It is well known that if F 6= Sn, a star of order n, then there exists an embedding of F into its complement F. In this note we consider a problem concerning the uniqueness of such an embedding.
LA - eng
KW - packings of graphs; uniquely embeddable graphs
UR - http://eudml.org/doc/267848
ER -

References

top
  1. [1] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124. doi:10.1016/0095-8956(78)90030-8[Crossref] Zbl0387.05020
  2. [2] D. Burns and S. Schuster, Every (p, p − 2) graph is contained in its complement , J. Graph Theory 1 (1977) 277-279. doi:10.1002/jgt.3190010308[Crossref] Zbl0375.05046
  3. [3] D. Burns and S. Schuster, Embedding (n, n−1) graphs in their complements, Israel J. Math. 30 (1978) 313-320. doi:10.1007/BF02761996[Crossref] 
  4. [4] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combin. 4 (1977) 133-142. Zbl0418.05003
  5. [5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302. doi:10.1016/0095-8956(78)90005-9[Crossref] Zbl0417.05037
  6. [6] J. Otfinowska and M. Woźniak, A note on uniquely embeddable forests, Preprint MD (www.ii.uj.edu.pl/preMD/) 046 (2010). Zbl1291.05162
  7. [7] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241. doi:10.1016/0166-218X(94)90112-0[Crossref] 
  8. [8] M. Woźniak, Packing three trees, Discrete Math. 150 (1996) 393-402. doi:10.1016/0012-365X(95)00204-A[Crossref] 
  9. [9] M. Woźniak, A note on uniquely embeddable graphs, Discuss. Math. Graph Theory 18 (1998) 15-21. doi:10.7151/dmgt.1060[Crossref] Zbl0915.05050
  10. [10] M. Woźniak, Packing of graphs-some recent results and trends, Studies, Math. Series 16 (2003) 115-120. Zbl1049.05513
  11. [11] M. Woźniak, Packing of graphs and permutation-a survey, Discrete Math. 276 (2004) 379-391. doi:10.1016/S0012-365X(03)00296-6[Crossref] 
  12. [12] M. Woźniak, A note on uniquely embeddable cycles, Preprint MD (www.ii.uj.edu.pl/preMD/) 047 (2010). 
  13. [13] H.P. Yap, Packing of graphs-a survey, Discrete Math. 72 (1988) 395-404. doi:10.1016/0012-365X(88)90232-4[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.