Displaying similar documents to “Counting dimensions of L -harmonic functions.”

A remark on gradients of harmonic functions.

Wen Sheng Wang (1995)

Revista Matemática Iberoamericana

Similarity:

In any C domain, there is nonzero harmonic function C continuous up to the boundary such that the function and its gradient on the boundary vanish on a set of positive measure.

On generalized f -harmonic morphisms

A. Mohammed Cherif, Djaa Mustapha (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study the characterization of generalized f -harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an f -harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144],...