Displaying similar documents to “Homomorphisms of semiholonomic Verma modules: An exceptional case.”

Generalized Verma module homomorphisms in singular character

Peter Franek (2006)

Archivum Mathematicum


In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the k -th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.

Classification of irreducible weight modules

Olivier Mathieu (2000)

Annales de l'institut Fourier


Let 𝔤 be a reductive Lie algebra and let 𝔥 be a Cartan subalgebra. A 𝔤 -module M is called a if and only if M = λ M λ , where each weight space M λ is finite dimensional. The main result of the paper is the classification of all simple weight 𝔤 -modules. Further, we show that their characters can be deduced from characters of simple modules in category 𝒪 .