On colorings avoiding a rainbow cycle and a fixed monochromatic subgraph.
Axenovich, Maria, Choi, JiHyeok (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Axenovich, Maria, Choi, JiHyeok (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Xu, Xiaodong, Radziszowski, Stanislaw P. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ward, C., Szabó, S. (1994)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Dzido, Tomasz, Nowik, Andrzej, Szuca, Piotr (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Elliot Krop, Irina Krop (2013)
Discussiones Mathematicae Graph Theory
Similarity:
Let f(n, p, q) be the minimum number of colors necessary to color the edges of Kn so that every Kp is at least q-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that [...] , slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing [...] and for all even n ≢ 1(mod 3), f(n, 4, 5) ≤ n− 1. For a complete bipartite graph G= Kn,n, we show an n-color construction to color...
Xu, Xiaodong, Xie, Zheng, Exoo, Geoffrey, Radziszowski, Stanisław P. (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Eric Andrews, Laars Helenius, Daniel Johnston, Jonathon VerWys, Ping Zhang (2014)
Discussiones Mathematicae Graph Theory
Similarity:
A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph
LeSaulnier, Timothy D., Stocker, Christopher, Wenger, Paul S., West, Douglas B. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Jean-Sébastien Sereni, Zelealem B. Yilma (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)
Discussiones Mathematicae Graph Theory
Similarity:
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...
Yuster, Raphael (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Eric Andrews, Futaba Fujie, Kyle Kolasinski, Chira Lumduanhom, Adam Yusko (2014)
Discussiones Mathematicae Graph Theory
Similarity:
In a red-blue coloring of a nonempty graph, every edge is colored red or blue. If the resulting edge-colored graph contains a nonempty subgraph G without isolated vertices every edge of which is colored the same, then G is said to be monochromatic. For two nonempty graphs G and H without isolated vertices, the mono- chromatic Ramsey number mr(G,H) of G and H is the minimum integer n such that every red-blue coloring of Kn results in a monochromatic G or a monochromatic H. Thus, the standard...
Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)
Discussiones Mathematicae Graph Theory
Similarity:
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.