Displaying similar documents to “Two-stage allocations and the double Q -function.”

An asymptotic approximation of Wallis’ sequence

Vito Lampret (2012)

Open Mathematics

Similarity:

An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, W ( n ) · ( a n + b n ) < π < W ( n ) · ( a n + b n ' ) with a n = 2 + 1 2 n + 1 + 2 3 ( 2 n + 1 ) 2 - 1 3 n ( 2 n + 1 ) ' b n = 2 33 ( n + 1 ) 2 ' b n ' 1 13 n 2 ' n .

Poisson sampling for spectral estimation in periodically correlated processes

Vincent Monsan (1994)

Applicationes Mathematicae

Similarity:

We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.

On the Kuramoto-Sivashinsky equation in a disk

Vladimir Varlamov (2000)

Annales Polonici Mathematici

Similarity:

We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed...

Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator

N. Lerner, Y. Morimoto, K. Pravda-Starov, C.-J. Xu (2011-2012)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

We provide some new explicit expressions for the linearized non-cutoff radially symmetric Boltzmann operator with Maxwellian molecules, proving that this operator is a simple function of the standard harmonic oscillator. A detailed article is available on arXiv [].