The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Determination of the topological structure of an orbifold by its group of orbifold diffeomorphisms.”

Tietze Extension Theorem for n-dimensional Spaces

Karol Pąk (2014)

Formalized Mathematics

Similarity:

In this article we prove the Tietze extension theorem for an arbitrary convex compact subset of εn with a non-empty interior. This theorem states that, if T is a normal topological space, X is a closed subset of T, and A is a convex compact subset of εn with a non-empty interior, then a continuous function f : X → A can be extended to a continuous function g : T → εn. Additionally we show that a subset A is replaceable by an arbitrary subset of a topological space that is homeomorphic...

An intrinsic definition of the Colombeau generalized functions

Jiří Jelínek (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a 𝒞 manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented.

On convolution operators with small support which are far from being convolution by a bounded measure

Edmond Granirer (1994)

Colloquium Mathematicae

Similarity:

Let C V p ( F ) be the left convolution operators on L p ( G ) with support included in F and M p ( F ) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that C V p ( F ) , C V p ( F ) / M p ( F ) and C V p ( F ) / W are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to M p ( F ) . Other subspaces of C V p ( F ) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.