Displaying similar documents to “Remarks on null controllability for semilinear heat equation in moving domains.”

Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case

Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guerrero, Jean-Pierre Puel (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form y n + f ( y ) = 0 . We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear,...

Null controllability of a nonlinear diffusion system in reactor dynamics

Kumarasamy Sakthivel, Krishnan Balachandran, Jong-Yeoul Park, Ganeshan Devipriya (2010)

Kybernetika

Similarity:

In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients....

Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

Anna Doubova, A. Osses, J.-P. Puel (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where...