Extending extremal contractions from an ample section.
Andreatta, Marco, Occhetta, Gianluca (2002)
Advances in Geometry
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Andreatta, Marco, Occhetta, Gianluca (2002)
Advances in Geometry
Similarity:
M. C. Beltrametti, A. J. Sommese (1995)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Alzati, Alberto, Tortora, Alfonso (2002)
Advances in Geometry
Similarity:
Marco Andreatta, Jarosław A. Wiśniewski (1998)
Bollettino dell'Unione Matematica Italiana
Similarity:
Una contrazione su una varietà proiettiva liscia è data da una mappa propria, suriettiva e a fibre connesse in una varietà irriducibile normale . La contrazione si dice di Fano-Mori se inoltre è -ampio. Nel lavoro, naturale seguito e completamento delle ricerche introdotte in [A-W3], si studiano diversi aspetti delle contrazioni di Fano-Mori attraverso esempi (capitolo 1) e teoremi di struttura (capitoli 3 e 4). Si discutono anche alcune applicazioni allo studio di morfismi birazionali...
Del Centina, A., Gimigliano, A. (2001)
Advances in Geometry
Similarity:
Hironobu Maeda (1986)
Compositio Mathematica
Similarity:
Priska Jahnke, Thomas Peternell, Ivo Radloff (2011)
Open Mathematics
Similarity:
In a follow-up to our paper [Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631], we classify smooth complex projective threefolds Xwith −K X big and nef but not ample, Picard number γ(X) = 2, and whose anticanonical map is small. We assume also that the Mori contraction of X and of its flop X + are not both birational.
Lucian Bădescu, Mauro Beltrametti (2013)
Open Mathematics
Similarity:
Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4),...
Tommaso De Fernex (1998)
Collectanea Mathematica
Similarity: