On the dimension of the adjoint linear system for threefolds

M. C. Beltrametti; A. J. Sommese

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 1, page 1-24
  • ISSN: 0391-173X

How to cite

top

Beltrametti, M. C., and Sommese, A. J.. "On the dimension of the adjoint linear system for threefolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 1-24. <http://eudml.org/doc/84198>.

@article{Beltrametti1995,
author = {Beltrametti, M. C., Sommese, A. J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {adjunction; adjoint systems; polarized 3-folds of log-general type; very ample line bundle on a 3-fold},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Scuola normale superiore},
title = {On the dimension of the adjoint linear system for threefolds},
url = {http://eudml.org/doc/84198},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Beltrametti, M. C.
AU - Sommese, A. J.
TI - On the dimension of the adjoint linear system for threefolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 1
EP - 24
LA - eng
KW - adjunction; adjoint systems; polarized 3-folds of log-general type; very ample line bundle on a 3-fold
UR - http://eudml.org/doc/84198
ER -

References

top
  1. [BPV] W. Barth - C. Peters - A. Van De Ven, Compact complex surfaces, Springer-Verlag. Ergebnisse der Math. und ihr. Grenz, 4, Berlin-Heidelberg -New York, 1984. Zbl0718.14023MR749574
  2. [BBeS] M.C. Beltrametti - G.M. Besana - A.J. Sommese, On the dimension of the adjoint linear system for quadric fibrations. In: "Algebraic Geometry and its Applications", Proceedings of the 8-th Algebraic Geometry Conference, Yaroslavl', 1992 (A. Tikhomirov and A. Tyurin eds.), Aspects of Math., E25, (1994), 9-20, Vieweg. Zbl0848.14002MR1282015
  3. [BBS] M.C. Beltrametti - A. Biancofiore A.J. Sommese, Projective n-folds of log-general type, I, Trans. Amer. Math. Soc., 314 (1989), 825-849. Zbl0702.14037MR1005528
  4. [BFS] M.C. Beltrametti - M.L. Fania - A.J. Sommese, On the adjunction theoretic classification of projective varieties, Math. Ann., 290 (1991), 31-62. Zbl0712.14029MR1107662
  5. [BSS] M.C. Beltrametti - M. Schneider - A.J. Sommese, Applications of the Ein-Lazarsfeld criterion for spannedness of adjoint bundles, Math. Z., 214 (1994), 593-599. Zbl0804.14006MR1248115
  6. [BS] M.C. Beltrametti - A.J. Sommese, On the adjunction theoretic classification of polarized varieties, J. Reine Angew. Math., 427 (1992), 157-192. Zbl0762.14005MR1162435
  7. [F] T. Fujita, Theorems of Bertini type for certain types of polarized manifolds, J. Math. Soc. Japan, 34 (1982), 709-718. Zbl0489.14001MR669278
  8. [GH] P. Griffiths - J. Harris, Principles of Algebraic Geometry, J. Wiley & Sons, 1978. Zbl0408.14001MR507725
  9. [H] J. Harris, Curves in projective spaces, S.M.S., Université de Montreal, (1982). Zbl0511.14014MR685427
  10. [Hr] R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag, 1977. Zbl0367.14001MR463157
  11. [K] S. Kleiman, The enumerative theory of singularities. In: "Real and Complex Singularities", Oslo1976 (P. Holme ed.), Sijthoff and Noordhoff. Zbl0385.14018MR568897
  12. [KMM] Y. Kawamata - K. Matsuda - K. Matsuki, Introduction to the minimal model problem, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10 (1987), 283-360. Zbl0672.14006MR946243
  13. [LPS] A. Lanteri - M. Palleschi - A.J. Sommese, On triple covers of Pn as very ample divisors. In: "Classification of Algebraic Varieties ", Proceedings L'Aquila, 1992, Contemp. Math.162 (1994), 277-292. Zbl0841.14003MR1272704
  14. [LS] E.L. Livorni - A.J. Sommese, Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 537-558. Zbl0636.14014MR880398
  15. [M] H. Maeda, Ramification divisors for branched coverings of Pn, Math. Ann.288 (1990), 195-199. Zbl0692.14006MR1075764
  16. [Mi] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Adv. Stud. Pure Math.10 (1987), 449-476. Zbl0648.14006MR946247
  17. [Mo] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math.116 (1982), 133-176. Zbl0557.14021MR662120
  18. [R] M. Reid, Young person's guide to canonical singularities, Algebraic Geometry, Bowdoin1985, Proc. Sympos. Pure Math., A.M.S., 46 - Part I, (1987), 345-414. Zbl0634.14003MR927963
  19. [ShS] B. Shiffman - A.J. Sommese, Vanishing Theorems on Complex Manifolds, Progress in Math., 56, Birkhäuser, 1985. Zbl0578.32055MR782484
  20. [S1] A.J. Sommese, Hyperplane Sections, Algebraic Geometry, Chicago Proceedings, 1981, Lecture Notes Math., 862 (1981), 232-271. Zbl0494.14001MR644822
  21. [S2] A.J. Sommese, On the minimality of hyperplane sections of projective threefolds, J. Reine Angew. Math.329 (1981), 16-41. Zbl0509.14044MR636441
  22. [S3] A.J. Sommese, Configurations of —2 rational curves on hyperplane sections of projective threefolds. In: "Classification of algebraic and analytic manifolds" (K. Ueno ed.), Progress in Mathematics, 39 (1983), 465-497, Birkhäuser. Zbl0523.14023MR728616
  23. [S4] A.J. Sommese, On the adjunction theoretic structure of projective varieties. In: "Complex Analysis and Algebraic Geometry", Proceedings Göttingen 1985 (H. Grauert ed.), Lecture Notes Math., 1194 (1986), 175-213, Springer-Verlag. Zbl0601.14029MR855885
  24. [S5] A.J. Sommese, On the nonemptiness of the adjoint linear system of a hyperplane section of a threefold, J. Reine Angew. Math., 402 (1989), 211-220; "Erratum ", J. Reine Angew. Math., 411 (1990), 122-123. Zbl0704.14004MR1022801
  25. [SV] A.J. Sommese - A. Van De Ven, On the adjunction mapping, Math. Ann., 278 (1987), 593-603. Zbl0655.14001MR909240
  26. [T] H. Tsuji, Stability of tangent bundles of minimal algebraic varieties, Topology27 (1988), 429-442. Zbl0698.14008MR976585

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.