The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The degree of the splitting field of a random polynomial over a finite field.”

Counting irreducible polynomials over finite fields

Qichun Wang, Haibin Kan (2010)

Czechoslovak Mathematical Journal

Similarity:

In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: π ( x ) = q q - 1 x log q x + q ( q - 1 ) 2 x log q 2 x + O x log q 3 x , x = q n where π ( x ) denotes the number of monic irreducible polynomials in F q [ t ] with norm x .

Some subclasses of close-to-convex functions

Adam Lecko (1993)

Annales Polonici Mathematici

Similarity:

For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes C β ( α ) defined as follows: a function f regular in U = z: |z| < 1 of the form f ( z ) = z + n = 1 a n z n , z ∈ U, belongs to the class C β ( α ) if R e e i β ( 1 - α ² z ² ) f ' ( z ) < 0 for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in C β ( α ) are examined.